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ON BORDISM AND COBORDISM GROUPS OF MORIN MAPS

ENDRE SZABÓ, ANDRÁS SZŰCS, AND TAMÁS TERPAI

Abstract. We prove that the unoriented cobordism groups of Morin maps

are 2-primary in nearly all cases. In the second part we define and compute a

ring structure on the rational cobordism group of oriented fold maps.

1. Introduction

We will consider Morin maps of n-manifolds into (n+k)-manifolds, k > 0. That
is, all maps will be assumed to be locally generic and have differentials of rank n or
n− 1 everywhere. It is known [5] that at each point a Morin map is either regular
or has a singularity of type Σ1r for some r ≥ 1, r ≤ n

k+1 , in which case it has the
local form

(t1, . . . , tn−1, x) 7→ (t1, . . . , tn−1, t1x+ · · ·+ trx
r, . . . , t(k−1)r+1x+ · · ·+ tkrx

r,

tkr+1x+ · · ·+ tkr+r−1x
r−1 + xr+1).

Definition 1. A Morin map will be called Σ1r -map if it has no singularities Σ1s

for s > r. The cobordism group of Σ1r -maps of n-manifolds into Rn+k can be
defined in a natural way (see [11]). Let us denote this group by Σ1r (n, k) (no
orientability is required). This group for r = 1 will be denoted by Fold(n, k), and
its oriented version will be FoldSO(n, k). For r = 0 (i.e., for the cobordism groups
of immersions), the notation will be Imm(n, k) and ImmSO(n, k), respectively.

Our goal in the first part is to evaluate the cobordism groups Σ1r (n, k) modulo
finite 2-primary groups. In the second part we will define and compute the ring
structure on the bigraded group⊕

n,k

FoldSO(n, k)⊗Q.

2. The unoriented cobordism groups of Morin maps

Theorem 1.

(1) The cobordism group Σ1r (n, k) of Morin maps without singularities Σ1s for
s > r is a finite 2-primary group if
• r =∞ (i.e., we allow all Morin maps),
• r is arbitrary and k is odd,
• r 6≡ 0 mod 4 and k is even.

(2) For r ≡ 0 mod 4 and k even the rank of the free part of the group Σ1r (n, k)
is equal to that of Hn−r(k+1)−k(BO(k);Z). (Recall that the latter is equal

to the number of partitions of n−r(k+1)−k
4 with entries not greater than k/2,

in particular it is zero when n−r(k+1)−k
4 is not an integer).
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This theorem improves [10, Theorem 1]. We do not know whether the groups
Σ1r (n, k) have odd torsion in the last case above or not.

The proof will be based on the so called Kazarian conjecture proved by the second
author in [11]. In order to formulate this conjecture we recall the so called Kazarian
space (considered already by R. Thom). For a given list τ of allowed singularities
the Kazarian space Kτ is the subset of the universal jet bundle corresponding to
the allowed singularities τ . (This space Kτ is very useful in computing the so called
Thom polynomials giving the homology classes of different singularity strata.) On
the other hand the second author constructed a space Xτ , whose homotopy groups
give the cobordism groups of the so called τ -maps, i.e., maps with singularities only
from the list τ (see [11] and the references there). For τ -maps a universal (virtual)
normal bundle can be defined, it is a virtual bundle over the Kazarian space Kτ
and it will be denoted by ν. The (strengthened version of) Kazarian conjecture
says that

Xτ
∼= Ω∞S∞Tν

where Tν is the “Thom space” of the virtual bundle ν. Note that although the
Thom space of a virtual bundle is not defined, the space Ω∞S∞Tν is well-defined
(see [11]).

Recall that the Kazarian space is glued together from “blocks”, one for each
allowed monosingularity η. The block for η is the total space of the vector bundle
over BGη associated to the source representation λη, where Gη is the maximal
compact subgroup of the symmetry group of η. We shall denote this vector bundle
by ξη. Recall from [7],[11] that this bundle is the universal normal bundle of the η-
stratum in the source manifold. Analogously, the vector bundle overBGη associated

to the target representation λ̃η is the universal normal bundle of the η-stratum in

the target manifold, and we shall denote this vector bundle by ξ̃η. For η = Σ1r

we abbreviate ξΣ1r to ξr and ξ̃Σ1r to ξ̃r. For Morin maps, these data have been
calculated in [9], [10], [7] (more necessary information on the Kazarian spaces Kτ
will be given in the proof of Theorem 6).

We will first investigate the cohomology of the (stable) Thom space Tν of the
virtual normal bundle ν over the Kazarian space. To obtain that, we use twisted
Thom isomorphism to reduce the question to the determination of the cohomology
groups of the Kazarian space with coefficients twisted by ν.

Along with the classes of maps mentioned above, we will need to use prim (i.e.,
projected immersion) maps. Recall that a Morin map f is called a prim map, if
the one dimensional vector bundle ker df over the set of singular points is trivial,
and moreover it is trivialised. The name prim comes from the property that being
a prim map is equivalent to being the projection of an immersion into the product
of the original target manifold with the real line. The analogue of the bundle ξr for
prim maps will be denoted by ξ̄r.

3. Calculation

We will consider coefficients from a ring R where there is division by 2, and
we will denote the local system twisted by the determinant bundle of some vector
bundle ζ by Rζ . We shall say also that Rζ is twisted by the class w1(ζ).

We will need to compute H∗(Tν;R), where ν is the virtual normal bundle
over the Kazarian space Kτ . Using the twisted Thom isomorphism we have:
H∗(Tν;R) ∼= H∗−k(Kτ ;Rν).
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We shall consider the Kazarian spectral sequence [11] for prim maps and then
for arbitrary Morin maps. Recall that the Kazarian spectral sequence starts from
the cohomologies of BGη and converges to those of Kτ . This time we need the
spectral sequence that converges to the cohomologies of the Kazarian space with
coefficients in Rν .

3.1. Case of even k (k = codimension of the map).

First, consider the prim case. We know that in this case the Kazarian spectral se-
quence converges to the cohomology of the Kazarian space for (k+1)-codimensional
immersions, which is BO(k+ 1). This is so because a codimension k prim map can
be identified with its codimension k + 1 lift to an immersion. The virtual normal
bundle is hence stably the same as the canonical bundle over BO(k+ 1). We claim
that for k even these cohomology groups vanish.

Lemma 1. The twisted cohomology H∗(BO(k + 1);Rν) coincides with the group
of classes which are anti-invariant under the deck transformation of the covering
map π : BSO(k+ 1)→ BO(k+ 1) (i.e., those which the deck transformation sends
to their negatives) and hence H∗(BO(k + 1);Rν) is zero when k is even.

Proof. Note that the local system Rν is the same as Rπ, because w1(ν) = w1(π).
From the Leray spectral sequence applied to the covering π it follows that

H∗(BSO(k + 1);R) = H∗(BO(k + 1);π∗(R)).

Here π∗(R) is the push-forward of the untwisted local system R on BSO(k + 1).
Hence this is locally R ⊕ R at each point, and the non-trivial loop-class acts on it
by interchanging the summands. Therefore it can be decomposed as the sum of the
invariant and anti-invariant part: π∗(R) = R⊕Rπ. Thus

H∗(BSO(k + 1);R) = H∗(BO(k + 1);π∗(R)) =

= H∗(BO(k + 1);R)⊕H∗(BO(k + 1);Rν).

Since the groups H∗(BSO(k + 1);R) and H∗(BO(k + 1);R) are isomorphic (both
groups are generated by the Pontrjagin classes) we obtain that H∗(BO(k+1);Rν) =
0. �

Completely analogously one obtains the twisted cohomologies of BO(k) for k
even.

Lemma 2. If k = 2t, then H∗(BO(k);Rν) = χ ∪ R[p1, . . . , pt], where χ is the
twisted Euler class. �

Now knowing where the Kazarian spectral sequence for prim maps and for k
even converges to let us have a look at its starting term.

The E1 term of the Kazarian spectral sequence can be described in this (prim
maps) case as follows. The r-th column contains the twisted cohomology groups
of the pair (Dr, Sr), where Dr and Sr are the total spaces of the disc bundle and
the sphere bundle associated to the vector bundle ξ̄r, which is the universal source
bundle over the Σ1r -points for prim maps. This universal bundle is ξ̄r = r(γk⊕ ε1)
(over BO(k) as its base space), see [9], [7]. The virtual normal bundle ν over the
base space of ξ̄r is stably the same as the canonical bundle γk over BO(k). Hence
w1(ξ̄r) = rw1(γk) = rw1(ν).



ON BORDISM AND COBORDISM GROUPS OF MORIN MAPS 137

Using the twisted Thom isomorphism again, we have

H∗(Dr, Sr;Rν) ∼= H∗−r(k+1)(BO(k);Rr+1
ν ),

where Rr+1
ν = Rν ⊗ · · · ⊗ Rν , r + 1 copies. Recall that we consider the case when

k is even, say k = 2t. Let us denote by A the ring R[p1, . . . , pt]. It is well known
that the untwisted cohomology ring of BO(k) is isomorphic to this ring A, with pj
identified with the jth Pontrjagin class. Summarizing the computation we see that
each column of the E1 term of the Kazarian spectral sequence is the ring A but
shifted differently: in the columns number 2h and 2h+ 1 it is shifted by (2h+ 1)k.
It follows that this spectral sequence must converge to zero in a very controlled
way. Namely the first differential d1 must be an isomorphism between the p-th and
(p + 1)-th column for p = 0, 2, 4, . . . . Indeed for p = 0 this follows from the facts
that

• the elements of lowest degree in the 0-th column must be mapped onto
those in the next column by d1 isomorphically because this is the only
chance for these elements to disappear, and they do disappear since the
E∞ term vanishes. Hence d1(χ) = U , where U is the twisted Thom class
of the bundle ξ̄1, while χ is the twisted Euler class in H∗(BO(k);Rν) (note
that in this case Rν and Rγ are isomorphic).
• the differential d1 is multiplicative in the sense that d1(χ∪pI) = d1(χ)∪pI ,

see [11, Section 13.1].

The argument can then be repeated for each even p.
Second case, general (not necessarily prim) Morin maps, k = 2t. The previous

spectral sequence (for the prim case) has a Z2 action corresponding to changing
the orientation of the kernel bundle, and we need to know what are the eigenspaces
corresponding to the two possible eigenvalues of this action. For this, we need to
understand what happens with the coefficient system Rν ⊗ Rξr = Rξ̃r for various

values of r. From [7] one knows that the target representation is

λ̃(ε,Q) = εr+1 ⊕Q⊕
⌈
r − 1

2

⌉
1⊕

⌊
r − 1

2

⌋
ε⊕

⌊r
2

⌋
Q⊕

⌈r
2

⌉
εQ

for Q ∈ O(k), ε ∈ O(1). When ε changes its sign then λ̃ changes orientation exactly
when r + 1 + b r−1

2 c is odd, i.e., when r ≡ 2, 3 mod 4.
When r ≡ 0, 1 mod 4, then the action discussed above (induced by −id : ε→ ε)

is identical and the columns as well as the differentials between them remain the
same as for prim maps. When r ≡ 2, 3 mod 4, then the action is changing the signs
of all cohomology classes, so these columns in the spectral sequence for general
Morin maps vanish.

Since the spectral sequences for prim maps and arbitrary Morin maps can be
mapped into each other, and for the columns r ≡ 0, 1 mod 4 will be mapped onto
each other isomorphically we obtain that the differential d1 will be isomorphism
again, and so the final E∞ term vanishes again. We obtain that the cohomology
groups of the Kazarian space for arbitrary Morin maps (with coefficients twisted
by w1(ν)) vanish if k is even (under the assumption that in the coefficient ring 2 is
invertible).

If we truncate the previous spectral sequence at the column corresponding to
Σ1r , i.e., we consider the spectral sequence for Σ1r -maps, then the differential dp,∗1
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still remains an isomorphism between the p-th and (p + 1)-th column for p even
except when p = r and r ≡ 0 mod 4.

3.2. Case of odd k.

Here, the coefficient system on BO(k) is twisted by w1(γk), and in the column
corresponding to Σ1r the coefficients are twisted corresponding to

w1(ξ̃) =

(
r + 1 +

⌊
r − 1

2

⌋
+
⌈r

2

⌉)
w1(γ1) + (r + 1)w1(γk) =

= rw1(γ1) + (r + 1)w1(γk).

In particular, for no column is the coefficient system twisted trivially. Notice that
H∗(BSO(k);R) ∼= R[p1, . . . , pbk/2c] is isomorphic to H∗(BO(k) × RP∞;R), with
the natural projection BSO(k)× S∞ → BO(k)× RP∞ inducing an isomorphism.
This implies that the groups H∗(BO(k) × RP∞;Rζ) are all 0 except when ζ is a
trivial line bundle by the same argument as in Lemma 1. So the Kazarian spectral
sequence with coefficients in Rν starts from the empty state E∗∗1 = 0 in this case
and hence H∗(KΣ1r ;Rν) = 0 for all 0 ≤ r ≤ ∞.

3.3. A geometric argument.

In addition to the previous computations we prove the following proposition:

Theorem 2. The image of the forgetting map ρ : Imm(n, k) → Fold(n, k) from
the unoriented cobordism group of immersions into that of fold maps contains only
elements of order 2 and the zero element. That is, 2ρ(Imm(n, k)) = 0.

Proof. Let i : Mn → Pn+k be a k codimensional immersion. Choose a section v
of the normal bundle νi transverse to the zero section; we consider v as a vector
field along i. Our claim is that the map j : M × [−1, 1] → P × [−1, 1], j(x, t) =
(i(x) + tv(x), t2) is a fold map if v is small enough. At the points where v is
nonzero, the map j is clearly an immersion, and hence the only singular points
can be of the form (p, 0) with p ∈ M and v(p) = 0. Since v is transverse to the
zero section, the set of points p where v(p) = 0 is a k codimensional submanifold
Z of M and v establishes an isomorphism between the normal bundle of Z in M
and the normal bundle of i(M) in P (restricted to Z). Thus for any point p that
satisfies v(p) = 0 we can choose coordinate neighbourhoods U ∼= Rk × Rn−k of p
and V ∼= Rk × Rk × Rn−k of i(p) such that on U the immersion i has the form
(x, y) 7→ (0, x, y) with x ∈ Rk, y ∈ Rn−k, and the vector field v has the form
(0, x, y) 7→ (x, 0, 0). In these coordinates

j(x, y, t) = (i(x, y) + tv(x, y), t2) = (tx, x, y, t2)

has the normal form of a Σ1,0 singularity multiplied by idRn−k . Consequently j
is a fold map as claimed. The boundary of j consists of two immersions regularly
homotopic to i, proving our initial claim. �

Remark: This means that the embedding Kimm → Kfold of the Kazarian space
of immersions into that of fold maps is 0 modulo 2-torsion in (co)homology with
coefficients twisted by ν, and there is only a single way of getting this result in the
Kazarian spectral sequence, by having the first differential surjective in cohomology
(injective in homology). But the ranks of the corresponding groups are the same, so
these surjections are actually isomorphisms. Hence we obtained a geometric proof
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of the fact that we have seen above, that the differential d1 in the Kazarian spectral
sequence maps the zero column isomorphically onto the next column.

4. Proof of Theorem 1

As a consequence of the computations in Section 3, we see that for k even and
r 6≡ 0 mod 4, as well as for k odd, the stable space Tν (where ν is the virtual normal
bundle over the Kazarian space Kτ ) has the same (co)homology groups modulo 2-
primary groups as a contractible space. By the mod C Hurewicz theorem (due to
Serre [8]), this implies that the stable homotopy groups of Tν are also the same as
those of a point modulo 2-primary groups, that is, they are all 2-primary groups.
But the stable homotopy groups of Tν are the homotopy groups of the classifying
space Xτ

∼= Ω∞S∞Tν. Applying the mod C Hurewicz theorem again, we obtain
the statement of the Theorem.

When k is even and r ≡ 0 mod 4, we have

H∗(Tν;Q) ∼= H∗−k(KΣ1r ;Qν) ∼= H∗−r(k+1)−k(BO(k);Qν) ∼=
∼= H∗−r(k+1)−2k(BO(k);Q)

as the Kazarian spectral sequence degenerates with only column number r being
nonzero. Since stable homotopy groups of any space have the same rank as the
rational homology of the same space, we have

dimπn+k(Xτ )⊗Q = dimπSn+k(Tν)⊗Q = dimHn+k(Tν;Q) =

= dimHn−r(k+1)−k(BO(k);Q)

as claimed.

5. Left-right bordism groups of τ-maps.

Definition 2. The so called left-right bordism groups of τ -maps were defined in
[11]. In this case we allow to change the target manifold also by a cobordism, and
two τ -maps are equivalent (in this case bordant) if their sources and targets are
cobordant and there is a τ map from the cobordism between the sources into that
of the targets joining the original maps. The corresponding group is denoted by
Bordτ (n, k). (Here the singularities in the list τ are those of codimension k maps,
the sources are n-dimensional and the target manifolds are (n+ k)-dimensional.)

Remark: A version of the Pontrjagin - Thom construction for singular maps
implies that

Bordτ (n, k) ≈ Nn+k(Xτ ).

These groups are vector spaces over Z2. In [12] these groups were computed for the
simplest set of multisingularities. Here we shall consider the following versions of
these groups:

• The targets and their cobordisms are oriented, but the sources might be
non-orientable. These groups are denoted by Bordtarget−orτ (n, k). They
are isomorphic to the oriented bordism groups of the unoriented classifying
spaces Xτ :

Bordtarget−orτ (n, k) ∼= Ωn+k(Xτ ).
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• Both the target and the source, as well as their bordisms, are oriented.
These groups are denoted by BordSOτ (n, k). They are isomorphic to the
oriented bordism groups of the oriented version of the classifying space
XSO
τ :1

BordSOτ (n, k) ∼= Ωn+k(XSO
τ ).

Theorem 3. Let τ be the collection of all multisingularities of k codimensional
maps, k ≥ 2, composed from

• all Morin monosingularities, or
• Σ1s , s ≤ r for some r ≥ 0, r 6≡ 0 mod 4 and k is even, or
• Σ1s , s ≤ r for some r ≥ 0, and k is odd.

Then the τ -bordism groups with oriented target Bordtarget−orτ (n, k) are isomor-
phic modulo 2-primary groups to Ωn+k, the oriented cobordism group of (n + k)-
manifolds. The mapping Bordtarget−orτ (n, k)→ Ωn+k that associates to a map the
cobordism class of its target is a mod 2 isomorphism.

Proof. The bordism groups Bordtarget−orτ (n, k) ∼= Ωn+k(Xτ ) can be computed us-
ing the Atiyah-Hirzebruch spectral sequence (see [1]). The first page of the spectral
sequence is Hp(Xτ ; Ωq). Since the homotopy groups of Xτ are 2-primary groups
and the space Xτ is (k−1)-connected, its reduced integral homology groups are also
finite 2-primary groups for k ≥ 2; hence the first page modulo 2-primary groups
vanishes apart from the first column (that is, p = 0), which corresponds to the
cobordism class of the target. The spectral sequence degenerates and we get the
statement of the theorem. �

Remark: For k = 1 the space Xτ might be (and will be) non-simply connected
and therefore we cannot use the mod C Hurewicz theorem of [8] to deduce that its
homology groups are 2-primary groups.

The remaining case when k is even and r is divisible by 4 can be handled more
conveniently with the following notation. Let A∗ be a graded Abelian group of
finite type, A∗ = ⊕

j
Aj . Denote by SP(A∗) the graded skew-commutative ring

multiplicatively freely generated by the additive generators of A∗. That is,

SP(A∗) =

(
∧( ⊕
j odd

Aj)

)
⊗
(
Sym( ⊕

j even
Aj)

)
,

where for a vector space V the symmetric algebra Sym(V ) is defined as

Sym(V ) =

∞⊕
j=0

V ⊗j/(v1 ⊗ · · · ⊗ vj − vσ(1) ⊗ · · · ⊗ vσ(j))v1,...,vj∈V,σ∈Sj
,

and ∧V is the free skew algebra generated by V .
Recall that for a topological space X the infinite symmetric power of X is also

denoted by SPX.

Lemma 3.

H∗(SPX;Q) ∼= SPH∗(X;Q).

1The space Xτ was not considered in [11], and XSO
τ was denoted there by Xτ .
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Proof. By [3, page 472] the space SPX is weakly homotopically equivalent to∏
j≥0

K(Hj(X;Z), j). Hence the rational homology groups of SPX are those of∏
j≥0

K(Zbj , j), where bj is the rank of Hj(X;Z). It is a well-known result of Serre

(see e.g. [2]) that H∗(K(Z, j);Q) is generated by a j-dimensional free, respectively
skew generator depending on whether j is even or odd. Hence the left hand side of
the statement of the Lemma is the free skew symmetric algebra on the generators
of H∗(X;Q), and this coincides with the right hand side by definition. �

Theorem 4. Let τ be the collection of all multisingularities of k codimensional
maps composed from Σ1s , s ≤ r where k is even and r is divisible by 4. Then the
free part of the τ -bordism group with oriented target has dimension

dimBordtarget−orτ (n, k)⊗Q = dim (SP (H∗(Tν;Q))⊗ Ω∗)n+k =

∑
n+k

4 =j+
∑
l

lal

qj
∏
l

al>0

(
q
l− (k+1)r+2k

4
+ al − 1

al

)
,

where qm is the number of partitions of m into positive integers.

Proof. Just as before, we have

Bordtarget−orτ (n, k)⊗Q ∼= Ωn+k(Xτ )⊗Q ∼=
n+k∑
i=0

Hn+k−i(Xτ ;Q)⊗ Ωi ∼=

∼=
bn+k

4 c∑
j=0

Hn+k−4j(ΓTν;Q)⊗Qqj .

For any virtual cell complex L the spaces ΓL and SPL are rationally homotopy
equivalent, see e.g. [11, Lemma 81]. In particular, their rational homology groups
are isomorphic and we can replace ΓTν by SPTν in the last expression above,
obtaining the first claimed equality. Extend the notation qα by setting qα = 0 if α
is not an integer. Then

dimHm(Tν;Q) = dimHm−(k+1)r−2k(BO(k);Q) = qm−(k+1)r−2k
4

;

note that in particular 4 | r and 2 | k imply that dimHm(Tν;Q) = 0 unless 4 | m.
Therefore, for any n, we have

dimBordtarget−or(n, k)⊗Q =

bn+k
4 c∑
j=0

dim

((
∧
(
⊕

u odd
Hu(Tν;Q)

)
⊗ Sym

(
⊕

u even
Hu(Tν;Q)

))
n+k−4j

⊗Qqj
)

=

bn+k
4 c∑
j=0

∑
n+k−4j=∑

ubu

qj
∏
ueven
bu>0

(
dimHu(Tν;Q) + bu − 1

bu

)
=
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∑
n+k=

4j+
∑

4lal

qj
∏
l

al>0

(
dimH4l(Tν;Q) + al − 1

al

)
=

∑
n+k

4 =j+
∑
lal

qj
∏
l

al>0

(
q
l− (k+1)r+2k

4
+ al − 1

al

)
,

which is our second claimed equality. �

6. Ring structure on the direct sum of oriented cobordism groups of
fold maps

⊕
n,k

FoldSO(n, k)⊗Q

Let us recall first Wells’ theorem from [13] on the ring of immersions. By the
product of two immersion-cobordism classes [f : Mm → Rm+k] and [g : Nn →
Rn+l] we mean the cobordism class of the product of the representatives2: [f :
Mm → Rm+k]× [g : Nn → Rn+l] = [f × g : Mm ×Nn → Rm+k ×Rn+l]. Let si be
the characteristic class corresponding to the symmetric polynomial x2i

1 + x2i
2 + . . . ,

where the total Pontrjagin class is 1 + p1 + p2 + · · · =
∏
j

(1 + x2
j ), see [4].

Theorem 5 (Wells, [13]).⊕
n,k

Imm(n, k)⊗Q = Q
[
[f0], [f1], . . .

]
,

where [fi] is the cobordism class of an immersion fi : M4i+2 # R4i+4 such that
〈e∪si(p1, . . . , pi), [M ]〉 6= 0. Here e denotes the twisted normal Euler class of fi, and
[M ] is the twisted integer valued fundamental class of the unoriented manifold M ,
finally si is the characteristic class described above.

Definition 3. Given two cobordism classes of oriented fold maps [f : Mm → Rm+k]
and [g : Nn → Rn+l] we define their product as follows. The representatives f and
g can be chosen to be immersions. Their product is an immersion, and we define
[f ]× [g] to be the oriented fold-cobordism class of this product.

Theorem 6.

a) The above definition does not depend on the involved choices, that is, it gives a
well-defined product on the direct sum

⊕
n,k

FoldSO(n, k)⊗Q.

b) ⊕
n,k

FoldSO(n, k)⊗Q = Q[g0, h1, h2, . . . ],

where hi : CP 2i → R6i is any generic map, and g0 is the inclusion of a point
into the line.

Proof. Part a) follows from the facts that:

1) the natural map Hn(BSO(k);Q)→ Hn(BO(k);Q) is onto;
2) FoldSO(n, k)⊗Q ∼= Hn(BO(k);Q) (see [11]); and

2In [6] a different multiplication was considered: f ∗ g : Mm ×Nn → Rm+k ×Rn+l ×R1. For
arbitrary Morin maps only that definition seemed to be possible, besides this operation made the
singularities multpilicative. Here we consider the most natural product operation, it turns out to
be possible to define it for fold maps, more precisely for their rational cobordism classes.
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3) ImmSO(n, k)⊗Q ∼= Hn(BSO(k);Q) (see e.g. the proof of Corollary 7 below).

Part b). We have seen in [11] that the Kazarian space Kτ for τ =
{

[Σ0], [Σ1,0]
}

(i.e., Kτ = Kfold) has the same rational homology groups as BO(k). Recall that

H∗(BO(k);Q) = Q
[
p1, . . . , p[ k

2 ]
]

= Q
[
s1, . . . , s[ k

2 ]
]
.

It is well known [4] that the cobordism class of a manifold M4i is irreducible in
Ω∗ ⊗ Q if and only if si[M

4i] 6= 0. In particular the even complex dimensional
projective spaces CP 2i satisfy this property, hence Ω∗ ⊗Q = Q[[CP 2], [CP 4], . . . ].

For the convenience of the reader we give here a short summary of the properties
of the Kazarian spaces that we use. We deal with the case of cooriented maps, for
the unoriented version of the space replace all occurrences of the group SO with O.
The space Kτ depends on the set τ , which is the list of allowed singularities. Recall
that a τ -map is a map such that all its singularities have a type from the list τ .
The space Kτ is universal in the following sense. It has a stratification according
to the singularity types, each stratum corresponds to an element of τ . Further
for each cooriented τ -map f : Mn → Pn+k there arises a map κf : Mn → Kτ of
the source manifold M into the Kazarian space. This map κf is transverse to each
stratum of Kτ , hence the preimages of the strata induce a stratification on M which
coincides with the one induced by f (that is, the pulled-back strata coincide with
the singularity strata of f). Additionally, Kτ is the total space of a fibre bundle
over BSO,

π : Kτ → BSO.

Pulling back the canonical bundle γ (the limit lim
m→∞

γm) to Kτ one obtains the

bundle ν = π∗γ, which is the universal virtual normal bundle of a τ -map in the
sense outlined below. If f : Mn → Pn+k is a τ -map, and νf is its virtual normal
bundle, then

κ∗fν
∼= νf .

Hence there is a homotopically commutative diagram

Kτ
π

��
M

κf

<<yyyyyyyy νf // BSO

so κf is a lift of the map νf : M → BSO to M → Kτ .
Now recall that in [11] for any τ -map f : Mn → Rn+k and for any x ∈ Hn(Kτ ;Q)

the x-characteristic number of f , that is, x[f ]
def
== 〈κ∗f (x), [Mn]〉 has been defined

and that these characteristic numbers give an isomorphism:

Hn(Kτ ;Q) = Hom(Hn(Kτ ;Q),Q)←− Cobτ (n, k)⊗Q
(x 7−→ x[f ]) ←−| [f ].

If hi : CP 2i → R6i is any generic map, then it is a fold map. Suppose that k ≥ 2i.

Let us consider the map h
(k)
i = gk−2i

0 · hi, i.e., the composition CP 2i hi−→ R6i ↪→
R4i+k. In [11] we have shown that for τ = {Σ0,Σ1,0} (when τ -maps are precisely
the fold maps) the space Kτ has the same rational homotopy groups as BO(k)
does, and π : Kτ → BSO is the standard mapping BO(k) → BSO (induced by

O(k)
(id,det)→ SO(k + 1) → SO) up to a rational homotopy. Hence π∗ maps all the
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Pontrjagin classes pi ∈ H4i(BSO;Q) to those in H4i(BO(k);Q) for i ≤ k
2 , while

for i > k
2 the class pi goes to zero.

Beyond the characteristic classes si mentioned in the previous proof we shall
also consider the classes s̄i that we define as si(p̄1, . . . ), where p̄j are the normal
Pontrjagin classes defined by 1 + p̄1 + p̄2 + · · · = (1 + p1 + p2 + . . . )−1.

Lemma 4. For x = s̄i, that is, x(p1, . . . ) = si(p̄1, . . . ), the x-characteristic number

of h
(k)
i is

s̄i[h
(k)
i ] = si[CP 2i] 6= 0.

Proof.

〈si(p1, . . . , pm), [CP 2i]〉 = 〈ν∗fsi(p̄1, . . . , p̄m), [CP 2i]〉 =

= 〈κ∗fπ∗si(p̄1, . . . , p̄m), [CP 2i]〉 = 〈κ∗fsi(p̄1, . . . , p̄m), [CP 2i]〉 =

= 〈s̄i(κ∗fp1, . . . , κ
∗
fpm), [CP 2i]〉 = s̄i[h

(k)
i ].

�

By the multiplicative property of the classes s̄I = s̄i1 . . . s̄ir we have that the

cobordism classes of fold maps g
k−2|I|
0 hI , where I = (i1, . . . , ir) is a multiindex

hI = hi1 × hi2 × · · · × hir and |I| = i1 + · · ·+ ir, are linearly independent. Indeed,

the matrix aJI =
(
s̄J
[
g
k−2|I|
0 · hI

])
is non-degenerated. Here both multiindices J

and I run over all the partitions of all the numbers 0, 1, 2, . . . ,
[
k
2

]
. Hence⊕

n,k

CobΣ1,0(n, k)⊗Q ∼= Q[g0, h1, h2, . . . ].

�

Corollary 7. The ring
⊕
n,k

ImmSO(n, k)⊗Q is isomorphic to the direct sum of the

rings Q[g0, h1, h2, . . . ] and Q[f0, f1, f2, . . . ]. Here fi is the map defined in Wells’
theorem. If α ∈ Q[g0, h1, h2, . . . ] and β ∈ Q[f0, f1, f2, . . . ], then α · β = 0.

Proof. By Wells’ theorem ImmSO(n, k) ≈ πsn+k(TγSOk ), where γSOk is the universal
oriented bundle of rank k. By Serre’s theorem

πsn+k(TγSOk )⊗Q ≈ Hn+k(TγSOk ;Q).

By the Thom isomorphism this is isomorphic to Hn(BSO(k);Q), which is isomor-
phic to Hn(BSO(k);Q), since Q is a field. Now let us consider again the double
cover π : BSO(k)→ BO(k) and the decomposition arising from it (see Lemma 1):

H∗(BSO(k);Q) = H∗(BO(k);Q)⊕H∗(BO(k);Qπ).

Wells has shown that the second summand is isomorphic to the cobordism group
of unoriented immersion of n-manifolds into Rn+k, while in [11] it has been shown
that the first summand is isomorphic to the oriented cobordism group of fold maps
of oriented n-manifolds into Rn+k.

Hence the theorem holds at least additively. But then we have also an isomor-
phism of rings if we define the multiplication on the direct sum as described in the
theorem. This follows from the following obvious lemma.
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Lemma 5. Let A,B,C be rings. Let ϕ : A → B and ψ : A → C be ring epimor-
phisms such that their direct sum ϕ⊕ ψ : A→ B ⊕ C is an additive isomorphism.
Then ϕ⊕ψ is a ring isomorphism between A and B⊕C, where the product on the
latter is defined so that for β ∈ B and γ ∈ C the equality β · γ = 0 holds.

Proof. The obtained map is obviously a ring homomorphism and additive isomor-
phism, hence it is a ring isomorphism. �

�
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E-mail address: endre@renyi.hu
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