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GEOMETRY AND SINGULARITIES OF THE PRONY MAPPING

DMITRY BATENKOV AND YOSEF YOMDIN

ABsTrRACT. The Prony mapping provides the global solution of the Prony system of equations
oAk =my, k=0,1,...,2n - 1.

This system appears in numerous theoretical and applied problems arising in Signal Re-

construction. The simplest example is the problem of reconstruction of linear combina-

tion of d-functions of the form g(x) = Z?:l a;6(x — x;), with the unknown parameters

ai, i, t=1,...,n, from the “moment measurements” my = fa:kg(x)dcc.

The global solution of the Prony system, i.e., the inversion of the Prony mapping, encoun-
ters several types of singularities. One of the most important ones is a collision of some of
the points ;. The investigation of this type of singularities has been started in [21] where the
role of finite differences was demonstrated.

In the present paper we study this and other types of singularities of the Prony mapping,
and describe its global geometry. We show, in particular, close connections of the Prony
mapping with the “Vieta mapping” expressing the coefficients of a polynomial through its
roots, and with hyperbolic polynomials and “Vandermonde mapping” studied by V. Arnold.

1. INTRODUCTION

Prony system appears as we try to solve a very simple “algebraic signal reconstruction” prob-
lem of the following form: assume that the signal F(z) is known to be a linear combination of

shifted d-functions:
d

F(x)= Zajé(x—xj). (1.1)

j=1

We shall use as measurements the polynomial moments:

mg =my (F) = /xkF (z)d . (1.2)
After substituting F' into the integral defining m; we get
d d
my(F) = /xk Zajé(:n —zj)dz = Zajm?.
j=1 j=1
Considering a; and x; as unknowns, we obtain equations
d
mk(F):Zajmf,k:O,l,.... (1.3)
j=1
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This infinite set of equations (or its part, for k =0,1,...,2d — 1), is called Prony system. It can
be traced at least to R. de Prony (1795, [19]) and it is used in a wide variety of theoretical and
applied fields. See [2] for an extensive bibligoraphy on the Prony method.

In writing Prony system (1.3) we have assumed that all the nodes z1,...,z4 are pairwise
different. However, as the left-hand side p = (mq, ..., maq—1) of (1.3) is provided by the actual
measurements of the signal F', we cannot guarantee a priori, that this condition is satisfied for
the solution. Moreover, we shall see below that multiple nodes may naturally appear in the
solution process. In order to incorporate possible collisions of the nodes, we consider “confluent
Prony systems”.

Assume that the signal F'(x) is a linear combination of shifted d-functions and their derivatives:

s dj—1
F(x)= Z Z a; 009 (z — x;). (1.4)
j=1 £=0
Definition 1.1. For F'(z) as above, the vector D (F') Lof (diy...,ds) is the multiplicity vector

of F, s = s(F) is the size of its support, T (F) ef (z1,...,2s), and rank (F) Lef Siiidj s its

rank. For avoiding ambiguity in these definitions, it is always understood that a; 4,1 # 0 for
all j =1,...,s (i.e. d; is the maximal index for which a; 4,1 # 0).
For the moments my, = my(F) = [2*F(x) dz we now get

s dj—l

k! _
my = Z Z amef ¢

j=1 £=0

Considering x; and a;, as unknowns, we obtain a system of equations

s bl
‘ k—¢
—ajx;  =mg, k=0,1,...,2d -1, (1.5)
2 2 g

which is called a confluent Prony system of order d with the multiplicity vector D = (dy, ..., ds).
The original Prony system (1.3) is a special case of the confluent one, with D being the vector
(1,...,1) of length d.

The system (1.5) arises also in the problem of reconstructing a planar polygon P (or even an
arbitrary semi-analytic quadrature domain) from its moments

mi(xr) =//2z’f><pdxdy, c=aay,
R

where xp is the characteristic function of the domain P C R2. This problem is important in
many areas of science and engineering [11]. The above yields the confluent Prony system

s dj*l
my = Z Z cijk(k—1)---(k—i+ 1)zf_i, cij €C, z; € C\{0}.

j=1 i=0
Definition 1.2. For a given multiplicity vector D = (dy, ..., ds), its order is Y 5_, d;.

As we shall see below, if we start with the measurements pu(F) = p = (mo, ..., mag—1), then
a natural setting of the problem of solving the Prony system is the following:

Problem 1.3 (Prony problem of order d). Given the measurements

w=(mg,...,mag—1) € Cc2d
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in the right hand side of (1.5), find the multiplicity vector D = (dy,...,ds) of order

’I":idj éd,
j=1

and find the unknowns x; and aj g, which solve the corresponding confluent Prony system (1.5)
with the multiplicity vector D (hence, with solution of rank r).

It is extremely important in practice to have a stable method of inversion. Many research
efforts are devoted to this task (see e.g. [3, 7, 10, 17, 18, 20| and references therein). A basic
question here is the following.

Problem 1.4 (Noisy Prony problem). Given the noisy measurements
fi = (mg, ..., mMaq_1) € C*

and an estimate of the error |my — my| < ek, solve Problem 1.3 so as to minimize the recon-
struction error.

In this paper we study the global setting of the Prony problem, stressing its algebraic structure.
In Section 2 the space where the solution is to be found (Prony space) is described. It turns out
to be a vector bundle over the space of the nodes x1,...,24. We define also three mappings:
“Prony”, “Taylor”, and “Stieltjes” ones, which capture the essential features of the Prony problem
and of its solution process.

In Section 3 we investigate solvability conditions for the Prony problem. The answer leads
naturally to a stratification of the space of the right-hand sides, according to the rank of the
associated Hankel-type matrix and its minors. The behavior of the solutions near various strata
turns out to be highly nontrivial, and we present some initial results in the description of the
corresponding singularities.

In Section 4, we study the multiplicity-restricted Prony problem, fixing the collision pattern
of the solution, and derive simple bounds for the stability of the solution via factorization of the
Jacobian determinant of the corresponding Prony map.

In Section 5 we consider the rank-restricted Prony problem, effectively reducing the dimension
to 2r instead of 2d, where r is precisely the rank of the associated Hankel-type matrix. In this
formulation, the Prony problem is solvable in a small neighborhood of the exact measurement
vector.

In Section 6 we study one of the most important singularities in the Prony problem: collision
of some of the points x;. The investigation of this type of singularities has been started in [21]
where the role of finite differences was demonstrated. In the present paper we introduce global
bases of finite differences, study their properties, and prove that using such bases we can resolve
in a robust way at least the linear part of the Prony problem at and near colliding configurations
of the nodes.

In Section 7 we discuss close connections of the Prony problem with hyperbolic polynomials
and “Vandermonde mapping” studied by V.I.Arnold in [1] and by V.P.Kostov in [13, 14, 15|, and
with “Vieta mapping” expressing the coefficients of a polynomial through its roots. We believe
that questions arising in theoretical study of Prony problem and in its practical applications
justify further investigation of these connections, as well as further applications of Singularity
Theory.

Finally, in Appendix A we describe a solution method for the Prony system based on Padé
approximation.
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2. PRONY, STIELTJES AND TAYLOR MAPPINGS

97

In this section we define “Prony”, “Taylor”, and “Stieltjes” mappings, which capture some
essential features of the Prony problem and of its solution process. The main idea behind
the spaces and mappings introduced in this section is the following: associate to the signal
F(z) = S>%, a;i6(x — z;) the rational function R(z) = S°¢_ | 9. (In fact, R is the Stieltjes

i=1 z—x;
integral transform of F'). The functions R obtained in this way can be written as R(z) = ggzg

with deg P < deg @ — 1, and they satisfy R(oco) = 0. Write R as

d
a;

0= 2 iy

i=1

Developing the summands into geometric progressions we conclude that R(z) = S 52 my(2)*+1,

z
with
d

E k
myg = a;x; ,

i=1
so the moment measurements my, in the right hand side of the Prony system (1.3) are exactly
the Taylor coefficients of R(z). We shall see below that this correspondence reduces solution of
the Prony system to an appropriate Padé approximation problem.

Definition 2.1. For each w = (71,...,24) € C% let s = s(w) be the number of distinct
coordinates 7;, j =1,...,s, and denote T'(w) = (71, ..., 7s). The multiplicity vector is

D =D (w) =(dy,...,ds),
where d; is the number of times the value 7; appears in {z1,...,24}. The order of the values in
T (w) is defined by their order of appearance in w.
Example 2.2. For w = (3,1,2,1,0,3,2), we have
s(w)y=4, T(w)=(3,1,2,0),and D (w)=(2,2,2,1).
Remark 2.3. Note the slight abuse of notations between Definition 1.1 and Definition 2.1. Note
also that the order of D (w) equals to d for all w € CY.

Definition 2.4. For each w € C%, let s = s(w), T (w) = (11,...,7s) and D (w) = (dy,...,ds)
be as in Definition 2.1.
(1) Vi, is the vector space of dimension d containing the linear combinations

s dj—1

9= > 70" (x—1) (2.1)

j=1 £=0
of d-functions and their derivatives at the points of T' (w). The “standard basis” of V,, is
given by the distributions
80 =09 (x—15), j=1,...,8(w); £=0,...,d; — 1. (2.2)
(2) W, is the vector space of dimension d of all the rational functions with poles T' (w) and
multiplicities D (w), vanishing at oo :

S

R(z) = , Q(z):H(z—Tj)dj,degP(z)<degQ<d.

j=1
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The “standard basis” of W,, is given by the elementary fractions
1

Rjo=——,
(z—15)

j=1,...,840=1,...,d;.

Now we are ready to formally define the Prony space P; and the Stieltjes space S as certain
(trivial) vector bundles over C¢.
Definition 2.5. The Prony space P, is the vector bundle over C?, consisting of all the pairs

The topology on Py is induced by the natural embedding P; € C? x D, where D is the space of
distributions on C with its standard topology.

Definition 2.6. The Stieltjes space Sy is the vector bundle over C?, consisting of all the pairs
(w,7) : weCh veW,.

The topology on S, is induced by the natural embedding S; C C¢ x R, where R is the space of
complex rational functions with its standard topology.

Definition 2.7. The Stieltjes mapping SM : P; — Sy is defined by the Stieltjes integral
transform: for (w, g) € Py

SM ((w,g)) = (w, 7). 7(2):/00 glw)dz

oo 2 X
Sometimes we abuse notation and write for short SM (g) = 7, with the understanding that SM
is also a map SM : V,, — W,, for each w € CZ.

The following fact is immediate consequence of the above definitions.

Proposition 2.8. SM is a linear isomorphism of the bundles Py and Sy (for each w € C?, SM
is a linear isomorphism of the vector spaces Vi, and Wy, ). In the standard bases of V,, and W,
the map SM is diagonal, satisfying

SM (6;0) = (1) 'R 4 (2).
Furthermore, for any (w,g) € Py
P(z)
(2)

——

irreductble

SM (g) =

deg P < deg @ = rank (g) < d. (2.3)

QO

Definition 2.9. The Taylor space T4 is the space of complex Taylor polynomials at infinity of
degree 2d — 1 of the form Zii}l mk(%)kﬂ. We shall identify 7; with the complex space C2?
with the coordinates my, ..., mog_1.

Definition 2.10. The Taylor mapping TM : S; — 7T is defined by the truncated Taylor
development at infinity:

TM (w,7)) = 2%31 Qg (i)kﬂ, where v (z) = iak (1)k+1.

z
k=0 k=0
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We identify 7M ((w,7)) as above with (ag,...,a2s—1) € C??. Sometimes we write for short
TM (’7) = (OLQ, - ,()éQd,l).

Finally, we define the Prony mapping PM which encodes the Prony problem.
Definition 2.11. The Prony mapping PM : P; — C2? for (w, g) € P, is defined as follows:

PM ((w,g)) = (mo, ..., mag_1) € C*, mi =my (g) = /xkg (x)d .

By the above definitions, we have
PM=TMoSM. (2.4)

Solving the Prony problem for a given right-hand side (my, ..., maq—1) is therefore equivalent to
inverting the Prony mapping PM. As we shall elaborate in the subsequent section, the identity
(2.4) allows us to split this problem into two parts: inversion of 7 M, which is, essentially, the
Padé approximation problem, and inversion of SM, which is, essentially, the decomposition of
a given rational function into the sum of elementary fractions.

3. SOLVABILITY OF THE PRONY PROBLEM

3.1. General condition for solvability. In this section we provde a necessary and sufficient
condition for the Prony problem to have a solution (which is unique, as it turns out by Proposition
3.2). As mentioned in the end of the previous section, our method is based on inverting (2.4)
and thus relies on the solution of the corresponding (diagonal) Padé approzimation problem [4].
Problem 3.1 (Diagonal Padé approximation problem). Given = (my, ..., maq_1) € C*?, find
a rational function Ry(z) = % € Sy with deg P < deg@ < d, such that the first 2d Taylor

coefficients at infinity of Rq(z) are {mk}id:?)l.

Proposition 3.2. If a solution to Problem 3.1 exists, it is unique.

Proof. Writing R (z) = ggg, Ry (2) = 511((?)’ with deg P < deg Q@ < d and deg P; < deg Q1 < d,
we get

PQ. — P,
Rom . PQ-PQ
Q1
and this function, if nonzero, can have a zero of order at most 2d — 1 at infinity. O

Let us summarize the above discussion with the following statement.

Proposition 3.3. The tuple

{s, D = (dy,...,ds), r= Zdj <d, X = {xj}j:17 A=Aajet;oy . e:o,“.,dj—1}

j=1

is a (unique, up to a permutation of the nodes {x;}) solution to Problem 1.8 with right-hand
side

1= (mo,...,maq_1) € C*
if and only if the rational function

2d—1

s dj
Roxa(s) =33 (<17 (=) = 37 B 0 ()

7
j=1¢=1 (z — ) k=0
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is a (unique) solution to Problem 3.1 with input p. In that case,

*© g(x)dx -

Rp x,a(z)= / % where g (x) = Z Z a; 009 (z — x;),
oo 2T ==

i.e., Rp x a (%) is the Stieltjes transform of g (x).

Proof. This follows from the definitions of Section 2, (2.4), Proposition 3.2 and the fact that the
problem of representing a given rational function as a sum of elementary fractions of the specified
form (i.e., inverting SM) is always uniquely solvable up to a permutation of the poles. (I

The next result provides necessary and sufficient conditions for the solvability of Problem 3.1.
It summarizes some well-known facts in the theory of Padé approximation, related to “normal
indices” (see, for instance, [4]). However, these facts are not usually formulated in the literature
on Padé approximation in the form we need in relation to the Prony problem. Consequently, we
give a detailed proof of this result in Appendix A. This proof contains, in particular, some facts
which are important for understanding the solvability issues of the Prony problem.

Definition 3.4. Given a vector p = (mq, ..., maq—1), let My denote the d x (d + 1) Hankel
matrix

mo mq mao e mgq
- mi mo ms N ma+1
Mg = ) : . . ] (3.1)
mq—1 Mg Md41 ... M2d—1

For each e < d, denote by M, the e x (e + 1) submatrix of My formed by the first e rows and
e + 1 columns, and let M, denote the corresponding square matrix.

Theorem 3.5. Let 1 = (mo,...,maq—1) be given, and let v < d be the rank of the Hankel matriz
My as in (3.1). Then Problem 3.1 is solvable for the input u if and only if the upper left minor
|M..| of My is non-zero.

As an immediate consequence of Theorem 3.5 and Proposition 3.3, we obtain the following
result.

Theorem 3.6. Let 1 = (my,...,maq—1) be given, and let r < d be the rank of the Hankel matriz
My as in (3.1). Then Problem 1.3 with input u is solvable if and only if the upper left minor
|M..| of M, is non-zero. The solution, if it exists, is unique, up to a permutation of the nodes
{z;}. The multiplicity vector D = (du, ..., ds), of order ~7_ d; =r, of the resulting confluent
Prony system of rank r is the multiplicity vector of the poles of the rational function Rp x 4 (2),
solving the corresponding Padé problem.

As a corollary we get a complete description of the right-hand side data p € C?? for which
the Prony problem is solvable (unsolvable). Define for r = 1,...,d sets ¥, C C?? (respectively,
¥/ C?*%) consisting of u € C>¢ for which the rank of My = r and |M,| # 0 (respectively,
|M,| = 0). The set ¥, is a difference 3, = X1 \ X2 of two algebraic sets: X! is defined by
vanishing of all the s x s minors of My, r < s < d, while Y2 is defined by vanishing of |M,.|. In
turn, X/ = X1\ ¥72, with /' = £1 N1 %2 and X2 defined by vanishing of all the 7 x  minors of

M. The union ¥, U, consists of all y for which the rank of My = r, which is $1\ /2.

Corollary 3.7. The set ¥ (respectively, ') of u € C2¢ for which the Prony problem is solvable
(respectively, unsolvable) is the union ¥ = UI_ 3, (respectively, X' = U4_ ¥ ). In particular,
Y C {p € C? det My = 0}.
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So for a generic right hand side p we have |My| # 0, and the Prony problem is solvable. On
the algebraic hypersurface of p for which |My| = 0, the Prony problem is solvable if |My_1| # 0,
etc.

Let us now consider some examples.

Example 3.8. Let us fix d = 1,2,.... Consider u = (mo,...,maq_1) € C2¢, the right hand
sides of the Prony problem, to be of the form p = py = (dx¢) = (0,...,0, 1 ,0,...,0),

position ¢+1
with all the my, = 0 besides my =1, £=0,...,2d — 1, and let Mﬁ be the corresponding matrix.

Proposition 3.9. The rank of Mﬁ is equal to £+ 1 for £ < d — 1, and it is equal to 2d — ¢ for
¢ >d. The corresponding Prony problem is solvable for £ < d —1, and it is unsolvable for £ > d.

Proof. For d =5 and ¢ = 2,4,5,9, the corresponding matrices Mf are as follows.

M2 = , (solvable)

[N eloloNeoleoBal ==

M = (unsolvable)

—_— o o0 OO0 oo
SO OO0 OO0 o oo
OO OHrHr O OO oo
OO OO = IO oo oo
_ o o o OI IO o O OO

cCcoococo ~Roooo
cCoococo oo OO
coococo co~o O
cocoo coo RO
cCcoococo coo o~

—H O OO0 OO o ~Oo

o

In general, the matrices M f have the same pattern as in the special cases above, so their rank is
£4+1for ¢ <d—1,and 2d — ¢ for £ > d, as stated above. Application of Theorem 3.6 completes
the proof. O

In fact, py is a moment sequence of

1
0
and this signal belongs to Py if and only if £ < d — 1. In notations of Corollary 3.7 we have

F(x) = 56 (2),

,LL,@G EZJrla ng_]—7
M@ E Zéd*[? f 2 d

It is easy to provide various modifications of the above example. In particular, for
w=pe=(0,...,0,1,1,...,1),
the result of Proposition 3.9 remains verbally true.
Example 3.10. Another example is provided by fi, ¢,, with all the mj; = 0 besides
me, =1, my, =1, 0< 0 <d</ly <2d—1.

For {1 < ¢5—d+1 the rank of the corresponding matrix My is r = 2d+ ¢ — {5 +1 while |M,.| =0,
so the Prony problem for such iy, ¢, is unsolvable. For d =5 and ¢; = 2, ¢ = 8 the matrix is
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as follows:

MS(ZS) _

oo o
_— o o o

0
1
0
0

OO = OO
OO O oo
= O O O O

0 0 0

3.2. Near-singular inversion. The behavior of the inversion of the Prony mapping near the
unsolvability stratum ¥’ and near the strata where the rank of My drops, turns out to be pretty
complicated. In particular, in the first case at least one of the nodes tends to infinity. In the
second case, depending on the way the right-hand side p approaches the lower rank strata, the
nodes may remain bounded, or some of them may tend to infinity. In this section we provide
one initial result in this direction, as well as some examples. We believe that a comprehensive
description of the inversion of the Prony mapping near ¥’ and near the lower rank strata is
important both in theoretical study and in applications of Prony-like systems, and consider it
to be an important direction for future research.

Theorem 3.11. As the right-hand side p € C?\ ¥ approaches a finite point pg € X', at least

one of the nodes x1,...,xq in the solution tends to infinity.
Proof. By assumptions, the components my, ..., mog_1 of the right-hand side
p=(mo,...,mag—1) € c

remain bounded as p — pp. By Theorem 6.17, the finite differences coordinates of the solution
PM 71(u) remain bounded as well. Now, if all the nodes are also bounded, by compactness we
conclude that PM ~'() — w € Py. By continuity in the distribution space (Lemma 6.9) we
have PM (w) = up. Hence the Prony problem with the right-hand side o has a solution w € Py,
in contradiction with the assumption that pg € X'. O

Example 3.12. Let us consider an example: d = 2 and po = (0,0, 1,0). Here the rank £ of M,
is 2, and |Ms| = 0, so by Theorem 3.6 we have py € ¥, C ¥’. Consider now a perturbation
w(e) = (0,€,1,0) of pg. For € # 0 we have p(e) € ¥o C X, and the Prony system is solvable for
pe. Let us write an explicit solution: the coefficients cq, ¢; of the polynomial Q(z) = co+c12+ 22

we ﬁnd fI‘OIn (he S}/Stem (A.**):
Co —
c =
1 1

whose solution is ¢; = —2, ¢y = %. Hence the denominator Q(z) of R(z) is Q(z) = & — 12422,

and its roots are x1 = %7 To = % The coefficients by, by of the numerator P(z) = by+b; 2
we find from (A.x):

o d-1)

0 € 1 N bo ’

i.e., by =0, bg = €. Thus the solution of the associated Padé problem is

PO e & 1 &
R = e " e m)  wBG—m) wBG-m)

Finally, the (unique up to a permutation) solution of the Prony problem for p. is
€2 €2 1+ z\/g 1-— z\/g

R — Aoy = ——— rH = ——-—- xr = ———

Z\/g, 2 Z\/§7 1 % ) L2 %

As € tends to zero, the nodes x1, zo tend to infinity while the coefficients a1, as tend to zero.

)

[
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As it was shown above, for a given p € ¥ (say, with pairwise different nodes) the rank of the
matrix M, is equal to the number of the nodes in the solution for which the corresponding 6-
function enters with a non-zero coefficients. So u approaches a certain pg belonging to a stratum
of a lower rank of My if and only if some of the coefficients a; in the solution tend to zero. We
do not analyze all the possible scenarios of such a degeneration, noticing just that if ug € ¥,
i.e., the Prony problem is unsolvable for pg, then Theorem 3.11 remains true, with essentially
the same proof. So at least one of the nodes, say, x;, escapes to infinity. Moreover, one can show
that ajx?d*1 cannot tend to zero - otherwise the remaining linear combination of d-functions
would provide a solution for pyg.

If po € ¥, i.e., the Prony problem is solvable for pug, all the nodes may remain bounded, or

some xz; may escape to infinity, but in such a way that ajx?d_l tends to zero.

4. MULTIPLICITY-RESTRICTED PRONY PROBLEM

Consider Problem 1.4 at some point py € 3. By definition, po € X, for some ro < d. Let
o = PM ((wo, go)) for some (wo, go) € Pg. Assume for a moment that the multiplicity vector
Do = D (go) = (d1,...ds,), Zj‘;l d; = ro, has a non-trivial collision pattern, i.e., d; > 1 for at
least one j = 1,...,so. It means, in turn, that the function Rp, x, 4 () has a pole of multiplicity
d;. Evidently, there exists an arbitrarily small perturbation fi of 119 for which this multiple pole
becomes a cluster of single poles, thereby changing the multiplicity vector to some D’ # Dy.
While we address this problem in Section 6 via the bases of divided differences, in this section
we consider a “multiplicity-restricted” Prony problem.

Definition 4.1. Let x = (z1,...,2,) € C* and D = (di,...,ds) with d = }7_, d; be given.
The d x d confluent Vandermonde matrix is

Vl)g Vz)o e Vs,O
V:V(X’D):V(m17d17"'7x87d8): Vi1 Va1 Ve (41>
Vid-1 V2d-1 --- Vsd-1

where the symbol v; i denotes the following 1 x d; row vector

vie & [k, ket k(=) (k—dy)ah ]
Proposition 4.2. The matriz V defines the linear part of the confluent Prony system (1.5) in
the standard basis for V., namely,

al,O M mo ]
. m1
a _ .
V(xl,dl,...,fﬁs,ds) Ld_l ! = ’ ) (42)
LOs,d,—1] L"Md—1]

Definition 4.3. Let PM (wyg, go) = po € Xy, with D (go) = Dg and s (go) = so. Let Pp, denote
the following subbundle of P, of dimension sy + r¢:

Pp, ={(w,g9) € Pa: D(g) = Do}.
The multiplicity-restricted Prony mapping PM7, : Pp, — C*0770 is the composition
PMp, =moPM [Py s

where 7 : C2¢ — C®0*70 is the projection map on the first so 4 7 coordinates.
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Inverting this PMp,  represents the solution of the confluent Prony system (1.5) with fixed

structure Dy from the first £ =0,1,...,s0 + r9 — 1 measurements.
Theorem 4.4 ([7]). Let u§ = PMp, ((wo,go)) € C°F0 with the unperturbed solution
so dj—1
go = Z Z aj,gd(@ (x —15).
j=1 £=0

In a small neighborhood of (wo,go) € Pp,, the map PMp, is invertible. Consequently, for
small enough €, the multiplicity-restricted Prony problem with input data i* € C™oF50 satisfying
l2* — psll < e has a unique solution. The error in this solution satisfies

2 /9 so+To 1 S0 + 70 dj—2¢ |CL ) @—1‘
st = A (e 2g) 1o ).
Bazel < 7 \5 270 laja, 1] )

2 /2\%fr0 1
| AT (*)

B @ 6 |aj7dj_1|€7

A

where § & min,; |7, — 75| (for consistency we take aj 1 =0 in the above formula).

Proof outline. The Jacobian of PMp,  can be easily computed, and it turns out to be equal to
the product

jPM}BO =V (r,di+1,...,7,ds, + 1) diag {EJ}

where V' is the confluent Vandermonde matriz (4.1) on the nodes (11,. .., 7s, ), with multiplicity
vector ~

Do=(dy+1,...,ds, +1),
while E is the (d; 4 1) x (d; + 1) block

100 - 0

o1 0 --- a;.0
E; =

0 0 O ajyd].,l

Since po € %, the highest order coefficients a; 4, 1 are nonzero. Furthermore, since all the 7;
are distinct, the matrix V is nonsingular. Local invertibility follows. To estimate the norm of
the inverse, use bounds from [6]. O

Remark 4.5. Note that as two nodes collide (6 — 0), the inversion of the multiplicity-restricted
Prony mapping PM7p,, becomes ill-conditioned proportionally to §—(sotro),

Let us stress that we are not aware of any general method of inverting PM7p, , i.e., solving
the multiplicity-restricted confluent Prony problem with the smallest possible number of mea-
surements. As we demonstrate in [5], such a method exists for a very special case of a single
point, i.e., s = 1.

5. RANK-RESTRICTED PRONY PROBLEM

Recall that the Prony problem consists in inverting the Prony mapping PM : Py — T4. So,
given pu = (mo, ..., mag—1) € Tq we are looking for (w, g) € Py such that

mg(g) = /mkg(x)dm = my,

with £k =0,1,...,2d — 1. If p € ¥, with r < d, then in fact any neighborhood of p will contain
points from the non-solvability set X’. Indeed, consider the following example.
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Example 5.1. Slightly modifying the construction of Example 3.10, consider i, ¢, € C*? with
all the my = 0 besides my, = 1 and my, = ¢, such that ¢o > ¢; +d — 1. For example, if d =5
and /1 = 2, ¢5 = 8, the corresponding matrix is

001000
010000
MEEI =110 0 0 0 0
00000 ¢
0000 ¢ 0

For € = 0 the Prony problem is solvable, while for any small perturbation € # 0 it becomes
unsolvable. However, if we restrict the whole problem just to d = 3, it remains solvable for any
small perturbation of the input.

We therefore propose to consider the rank-restricted Prony problem analogous to the con-
struction of Section 4, but instead of fixing the multiplicity D (g) we now fix the rank r (recall
Definition 1.1).

Definition 5.2. Denote by P, the following vector bundle:
Pr={(w,g9): weC", geVyu},
where V,, is defined exactly as in Definition 2.4, replacing d with r.
Likewise, we define the Stieltjes bundle of order r as follows.
Definition 5.3. Denote by S, the following vector bundle:
S ={w,v): wel, yeWy,},
where W, is defined exactly as in Definition 2.4, replacing d with r.

The Stieltjes mapping acts naturally as a map SM : P, — S, with exactly the same definition
as Definition 2.7.

The restricted Taylor mapping 7 M, : S, — C?" is, as before, given by the truncated devel-
opment at infinity to the first 2r Taylor coefficients.

Definition 5.4. Let 7 : C2¢ — C?" denote the projection operator onto the first 2r coordinates.

Denote X &t (3,). The rank-restricted Prony mapping PM : P, — X is given by by

PM; ((w,g)) = (Mo, ..., mar_1), my =my (9) = /xkg (z)de.

Remark 5.5. P, can be embedded in Py, for example by the map =, : P. — Py
o (wg) €Prr— (W,g)ePy: w = x1,...,2,,0,...0 |, ¢’ =g.
——
X (d—r)
With this definition, PM can be represented also as the composition
PM:=moPMoZ,.
Proposition 5.6. The rank-restricted Prony mapping satisfies
PM; =TM,oSM.

Inverting PM represents the solution of the rank-restricted Prony problem. Unlike in the
multiplicity-restricted setting of Section 4, here we allow two or more nodes to collide (thereby
changing the multiplicty vector D (g) of the solution).

The basic fact which makes this formulation useful is the following result.
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Theorem 5.7. Let p € X% Then in a small neighborhood of uf € C?", the Taylor mapping
TM, is continuously invertible.

Proof. This is a direct consequence of the solution method to the Padé approximation problem
described in Appendix A. Indeed, if the rank of M, is full, then it remains so in a small neigh-
borhood of the entire space C?". Therefore, the system (A.xx) remains continuously invertible,
producing the coefficients of the denominator @ (z). Consequently, the right-hand side of (A.x)
depends continuously on the moment vector pu* = (mg,...,mar—1) € C?". Again, since the rank
always remains full, the polynomials P (z) and @ (z) cannot have common roots, and thereby
the solution R = g = TM;l (1*) depends continuously on p* (in the topology of the space of
rational functions). O

In the next section, we consider the remaining problem: how to invert SM in this setting.

6. COLLISION SINGULARITIES AND BASES OF FINITE DIFFERENCES

6.1. Introduction. Collision singularities occur in Prony systems as some of the nodes z; in the
signal F(z) = Y%, a;0(z — ;) approach one another. This happens for y near the discriminant
stratum A C C2?? consisting of those (my, ..., maq_1) for which some of the coordinates {z;} in
the solution collide, i.e., the function Rp, x,4 (z) has multiple poles (or, nontrivial multiplicity
vector D). As we shall see below, typically, as u approaches 1o € A, i.e. some of the nodes z; col-
lide, the corresponding coefficients a; tend to infinity. Notice, that all the moments my = my (F')
remain bounded. This behavior creates serious difficulties in solving “near-colliding” Prony sys-
tems, both in theoretical and practical settings. Especially demanding problems arise in the
presence of noise. The problem of improvement of resolution in reconstruction of colliding nodes
from noisy measurements appears in a wide range of applications. It is usually called a “super-
resolution problem” and a lot of recent publications are devoted to its investigation in various
mathematical and applied settings. See [8] and references therein for a very partial sample.

Here we continue our study of collision singularities in Prony systems, started in [21]. Our
approach uses bases of finite differences in the Prony space P, in order to “resolve” the linear
part of collision singularities. In these bases the coefficients do not blow up any more, even as
some of the nodes collide.

Example 6.1. Let » = 2, and consider the signal F' = a1d (x — 1) + a20 (z — x2) with
Ty = t, xo=1+E¢,

a; = —€ 1, 0122671.

The corresponding Prony system is

k
k o
(alxlf + a21,129 :) my = ktk71 + (j)tkjﬁjl, k=0, 1,2,3.
—

J

def
=pr(te)
As € — 0, the Prony system as above becomes ill-conditioned and the coefficients {a;} blow up,
while the measurements remain bounded. Note that
i = [0 1 2t+p2(t76)}
271 2t +pa(tie) 3t2+pa(tie)

therefore rank My = 2 and [Ms| = 1 # 0, i.e. the Prony problem with input (m,...,ms)
remains solvable for all e. However, the standard basis {0 (z — z1), 0 (x — x2)} degenerates, and
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in the limit it is no more a basis. If we represent the solution
1 1
F(x)=—-0b(x—t)+-0(x—t—¢)
€ €

in the basis

Al (1‘1,1‘2) = (5(1‘ —.231),

1 1
AQ (931,1‘2) = - - (5(56—.1‘1) =+ - -
1 — 42 2 T 41

0 (x —x2),

then we have
F.(z)=1 Dg(t,t+e),

i.e., the coefficients in this new basis are just {by =0, by = 1}. As € — 0, in fact we have
Ag (t,it+e) = (x—1t),

where the convergence is in the topology of the bundle P,..

Our goal in this section is to generalize the construction of Example 6.1 and [21] to handle
the general case of colliding configurations.

6.2. Divided finite differences. For modern treatment of divided differences, see e.g. [9, 12,
16]. We follow [9] and adopt what has become by now the standard definition.

Definition 6.2. Let an arbitrary sequence of points w = (x1,2,...,) be given (repetitions
are allowed). The (n-1)-st divided difference A" * (w) : I — C is the linear functional on the
space II of polynomials in one variable z, associating to each p € II its (uniquely defined) n-th
coefficient in the Newton form

p(@) =S {N " (@, 2} gt (@), G @ E @), (61)
j=1 k=1

Example 6.3. For n = 1, we have A” (z1)p = p(z1), and the 0-th order Newton interpolation
polynomial is the constant

Pi(z)=p(z)- 1L

=q0,w (T)

Example 6.4. For n = 2 consider two cases.
(1) If 2y # x5, we have A (z1,20)p = %, and the first order Newton interpolation
polynomial is

P =ple) 1 +2EEEPED gy,

=ou(®) =q1,u(x)
It can be readily verified that Py (zx) = p (zx) for k = 1,2.
(2) If 1 = 9, then A' (z1,21)p = p’ (1), and so
Py (z) =p (1) +p' (21) (z — 21).
It can be readily verified that Py (z1) = p (z1) and Py (z1) = p' (21).

It turns out that this definition can be extended to all sufficiently smooth functions for which
the interpolation problem is well-defined.
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Definition 6.5 ([9]). For any smooth enough function f, defined at least on x1,...,x,, the
divided finite difference A" ! (zy,...,2,) f is the n-th coefficient in the Newton form (6.1) of
the Hermite interpolation polynomial P, , which agrees with f and its derivatives of appropriate
order on x1,...,T, :

FO@)=PO () 1<j<n 0<0<d; E#{i: z=a5}. (6.2)
Example 6.6. Consider the rational function depending on a parameter z € C :
1
fola) = —.

The Oth divided difference is A® (z1) f = f (21) = ﬁ, and the Newton interpolation polyno-
mial is

1
P = .
1(35) zZ— X1
For n = 2 and 1 # x4, we have A! (x1,m2) = m, and
1 T — X1

PQ(I):

z—x1  (z2—m) (2 —m32)’
thus Py (x3) = f (xx) for k = 1,2. If 21 = 29 then A" (z1,21) = f. (21) = ﬁ, and so
1 _
+ x $12'
Z=T1  (z—x1)
Again, Py (21) = f, (z1) and Pj (z1) = fL (x1).

Therefore, each divided difference can be naturally associated with an element of the Prony
space (see Item 5 in Proposition 6.7 and Definition 6.8 below for an accurate statement).
Let us now summarize relevant properties of the functional A which we shall use later on.

P2 (.27) =

Proposition 6.7. For w = (z1,...,2,) € C*, let s(w), T (w) and D (w) be defined according
to Definition 2.1. Let ¢y (2) = [[;=1 (2 — Tj)dj be defined as in (6.1).

(1) The functional A" " (zy,...,x,) is a symmetric function of its arguments, i.e., it de-
pends only on the set {x1,...,x,} but not on its ordering.
(2) A" (x1,...,2,) is a continuous function of the vector (x1,...,x,). In particular, for
any test function f
lim A"z, ) f = AT () S

(3) A may be computed by the recursive rule

A" (@y,w) f= A" (@1, @
A" (xh .- ~u$n) [= - 2 - )in—ml Pt 1 Ty 7£ T,
{digmn_ (57‘7"27"')1‘7171),]"} |§:zn, T, = Ty,

where A (1) f = f (1) .
(4) (Generalization of Example 6.6) Let f. (z) = (z —x)" . Then for all z ¢ {x1,...,x,}

1
A (2, ) [ = . 6.4
( 1 ) f I (Z) ( )
(5) By (6.2), A" (xy,...,2,) is a linear combination of the functionals

0 (x—1), 1<j<s 0<0<d;.
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In fact, using (6.4) we obtain the Chakalov’s expansion (see [9])

s dj—1

A"z, ) = Z Z aj,gé([) (x—T15), (6.5)

j=1 ¢=0

where the coefficients {a;,} are defined by the partial fraction decomposition'

-y Z et (6.6)

an =1 =0 —7']
(6) By (6.5) and (6.6)
A () = — L e (x—1t). (6.7)
CENELN I P o
Xn

(7) Popoviciu’s refinement lemma [9, Proposition 23]: for every index subsequence
1<o(l)<o(2)<---<o(k)<n,
there exist coefficients o (j) such that

o(k)—k

AN (@), o) = Z a(f) A (@41, 240, Tgk) - (6.8)
j=o(1)—1

Based on the above, we may now identify A with elements of the bundle P,..

Definition 6.8. Let w = (21,...,2,) € C", and X = {ny,ne,...,na} C {1,2,...,7} of size
|X| = a be given. Let the elements of X be enumerated in increasing order, i.e.
1< <ne<---<ng<r

Denote by wx the vector

def

wyxy = (TnysTpgy .-y Tn, ) € CH

Then we denote

Ax (w) & A (wx).

We immediately obtain the following result.

Lemma 6.9. For allw € C" and X C {1,2,...,7}, we have Ax (w) € V4,. Moreover, letting
a = | X| we have

SM (Ax (w)) = A7 (wx) e (3 (6.9)

Finally, (w, Ax (w)) is a continuous section of Py.

IThe coefficients {ajﬁg} may be readily obtained by the Cauchy residue formula

— dm (& )dr” {<zfrj>”1}
T — 10 25e, \dz e (2) S
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6.3. Constructing a basis. The following result is well-known, see e.g. [9, Proposition 35].

Theorem 6.10. Denote Nj = {1,2,...,j} for j = 1,2,...,r. Then for every w € C", the
collection

{AN]' (w)};:l

s a basis for V.

There are various proofs of this statement. Below we show how to construct sets which do
not necessarily remain basis for all w € C”, but only for w in a small neighborhood of a given
wg € C". Theorem 6.10 will then follow as a special case of this construction.

Informally, if two coordinates x; and x; can collide, then it is necessary to allow them to be
glued by some element of the basis, i.e., we will need Ax (w) where 4,j € X (in Theorem 6.10
all coordinates might be eventually glued into a single point because w is unrestricted.) In order
to make this statement formal, let us introduce a notion of configuration, which is essentially a
partition of the set of indices.

Definition 6.11. A configuration C is a partition of the set N, = {1,2,...,r} into s = s(C)
disjoint nonempty subsets
Ui, X = Ny, | X;| =d; > 0.
The multiplicity vector of C is
T(C)=(dy,...,ds).

Every configuration defines a continuous family of divided differences as follows.

Definition 6.12. Let a configuration C = {X }j(zcl)

its elements

. Enumerate each X in increasing order of

X; = {njl <ng < nilj}
and denote for every m =1,2,...,d;

ijd:ef{ni: k;:l,2,...,m}.

For every w € C7, the collection B¢ (w) C V,, is defined as follows:

def m=1,...,d;
Bo (w) = {Ax,,, (w)}sz...,s(C)'

Now we formally define when a partition is “good” with respect to a point w € C".
Definition 6.13. The point w = (z1,...,2,) € C" is subordinated to the configuration
c={x,}9
if whenever x, = x, for a pair of indices k # /¢, then necessarily k, ¢ € X; for some Xj;.
Now we are ready to formulate the main result of this section.

Theorem 6.14. For a given wy € C" and a configuration C, the collection Be (wg) is a basis
for Vi, if and only if wy is subordinated to C. In this case, Be (w) is a continuous family of
bases for Vi, in a sufficiently small neighborhood of wy.

Let us first make a technical computation.

Lemma 6.15. For a configuration C and a point w € C", consider for every fired j = 1,...,s(C)
the set

d;
m=1"

S; YAy, ()} (6.10)
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(1) Define for any pair of indices 1 < k < £ < d; the index set
d f . . .
X ke = {7’L§g < ngwrl << nz} CXj=Xj14 = Xjq;-

Then
Ax; .., (w) € span S;.
(2) For an arbitrary subset Y C X; (and not necessarily containing segments of consecutive
indices), we also have

Ay (w) € span S;.
Proof. For clarity, we denote y; = x,; and [k: /] = Ax,,, (w). By (6.3) we have in all cases

J
(including repeated nodes)

(ye—yp) [kl =k+1:0—[k:{—1]. (6.11)

The proof of the first statement is by backward induction on n = ¢ — k. We start from

n = d;, and obviously [1 : d;] € S;. In addition, by definition of S; we have [1:m] € S; for all

m =1,...,d;. Therefore, in order to obtain all [k : £] with { —k =n—1, we apply (6.11) several
times as follows.

2:n] = (Yu—y)[lin]+[1:in—1]
B:n+1 = (Yynt1—y2)[2:n+1]+[2:n]
[dj—n+2:dj] : (ydj—ydj_n+1)[dj—n+1:dj]—l—[dj—n—l—l:dj—l]
_—

Here the symbol - - - under a term means that the term is taken directly from the previous line,
while AN indicates that the induction hypothesis is used. In the end, the left-hand side terms
are shown to belong to span.S;.

In order to prove the second statement, we employ the first statement, (6.8) and Proposition
6.7, Item 1. [l

Proof of Theorem 6.14. In one direction, assume that wy = (1, ..., z,) is subordinated to C. It
is sufficient to show that every element of the standard basis (2.2) belongs to span {B¢ (wp)}.
Let 7; € T (wp), let d; be the corresponding multiplicity, and let Y; C N, denote the index

set of size d;
def

Y—j = {Z : €Tr; = Tj} .
By the definition of subordination, there exists an element in the partition of C, say Xy, for
which Y; C Xj. By Lemma 6.15 we conclude that for all subsets Z C Y},
X
| k‘l C span {B¢ (wo)}

m=

Az (wo) € span {AXk,m (wo)}
By (6.7), Az (wo) is nothing else but

1
Ay (wg) = AlZ11 T E— N
2 () EQHEY R (/AR
x|Z|
This completes the proof of the necessity. In the other direction, assume by contradiction that
xr = x¢ = T but nevertheless there exist two distinct elements of the partition C, say X, and
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Xp such that k € X, and £ € Xg. Let the sets {S; };(:61) be defined by (6.10). Again, by Lemma
6.15 and (6.7) we conclude that

d(x — 1) € span S, Nspan Sg.

But notice that Be (wg) = Uj(zcl) Sj and y°7_; |S;| = d, therefore by counting dimensions we
conclude that

dim span {B¢ (wo)} < d,

in contradiction to the assumption that Be (wp) is a basis.

Finally, one can evidently choose a sufficiently small neighborhood U C C" of wqg such that
for all w € U, no new collisions are introduced, i.e., w is still subordinated to C. The continuity
argument (Lemma 6.9) finishes the proof. O

Remark 6.16. Another possible method of proof is to consider the algebra of elementary fractions
in the Stieltjes space S, and use the correspondence (6.9).

As we mentioned, Theorem 6.10 follows as a corollary of Theorem 6.14 for the configuration
C consisting of a single partition set NV,.

6.4. Resolution of collision singularities. Let u; € X C C?” be given, and let (wo, go) € P»
be a solution to the (rank-restricted) Prony problem. The point wq is uniquely defined up to a
permutation of the coordinates, so we just fix a particular permutation. Let T (wo) = (71, ..., Ts)-

Our goal is to solve the rank-restricted Prony problem for every input p* € C?” in a small
neighborhood of pf. According to Theorem 5.7, this amounts to a continuous representation of

the solution R« (z) = IQD“*((?) = TM, " (%) to the corresponding diagonal Padé approximation

problem as an element of the bundle P,..

Define 6 = min,»; |7; — 75| to be the “separation distance” between the clusters. Since the
roots of @~ depend continuously on p* and the degree of @, does not drop, we can choose
some pf sufficiently close to pug, for which

(1) all the roots of Q.+ (2) are distinct, and
(2) these roots can be grouped into s clusters, such that each of the elements of the j-th
cluster is at most §/3 away from ;.

Enumerate the roots of ,+ within each cluster in an arbitrary manner. This choice enables us
to define locally (in a neighborhood of uf) r algebraic functions x; (u*), ..., x, (u*), satisfying

S

Qu (2) = [T & =25 (u")).-

j=1

Then we extend these functions by analytic continuation according to the above formula into
the entire neighborhood of 1. Consequently,

%y def * *
w(p*) = (e (1), ze (1))
is a continuous (multivalued) algebraic function in a neighborhood of uf, satisfying
w () = wo.

After this “pre-processing” step, we can solve the rank-restricted Prony problem in this neigh-
borhood of pfj, as follows.
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Algorithm 1 Solving rank-restricted Prony problem with collisions.

Let uf € X% C C?" be given, and let (wo, go) € P, be a solution to the (rank-restricted) Prony
problem. Let wg be subordinated to some configuration C.

The input to the problem is a measurement vector p* = (mg,...,Mar—1) € C?", which is in a
small neighborhood of 1.

(1) Construct the function w = w (u*) as described above.
. . t=1,....d;

(2) Build the basis Be (w) = {Ax,, (w)}jzl,...,szc) for V.

(3) Find the coefficients {Bﬂ}jziizc) such that

SM | Y Bjulx,, (w) | =R(2),

JiL

by solving the linear system

E:@M(w)AXM(w)@ﬁ)ZWW(::/x%Mw)@ﬂdx), k=0,1,...,2r—1.  (6.12)
7.

=g(w)

Theorem 6.17. The coordinates {5;.¢} of the solution to the rank-restricted Prony problem,
given by Algorithm 6.4, are (multivalued) algebraic functions, continuous in a neighborhood of
the point ug .

Proof. Since the divided differences A; , (w) are continuous in w, then clearly for each
k=0,1,...,2r—1
the functions
viek (W) = Aje (w) (a7) = A7 (wx,,) (%)
are continuous® in w, and hence continuous, as multivalued functions, in a neighborhood of 1.

Since Be (w (11*)) remains a basis in a (possibly smaller) neighborhood of pf, the system (6.12),
taking the form

2

ZVM”“ (w) B0 (w) = my, k=0,1,...,2r -1,
4.

remains non-degenerate in this neighborhood. We conclude that the coefficients {5, ¢ (w (1*))}
are multivalued algebraic functions, continuous in a neighborhood of . Il

7. REAL PRONY SPACE AND HYPERBOLIC POLYNOMIALS

In this section we shall restrict ourselves to the real case. Notice that in many applications
only real Prony systems are used. On the other hand, considering the Prony problem over
the real numbers significantly simplifies some constructions. In particular, we can easily avoid
topological problems, related with the choice of the ordering of the points z1,...,z4 € C. So in
a definition of the real Prony space RP; we assume that the coordinates z1,..., x4 are taken
with their natural ordering z1 < o < --- < x4. Accordingly, the real Prony space RPy is
defined as the bundle (w,g), w € [, C R?, g € RV,,. Here [ is the prism in R? defined by
the inequalities 7 < z9 < -+ < x4, and RV, is the space of linear combinations with real
coefficients of d-functions and their derivatives with the support {x1,...,24}, as in Definition

°In fact, v 0,1 (w) are symmetric polynomials in some of the coordinates of w.
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2.4. The Prony, Stieltjes and Taylor maps are the restrictions to the real case of the complex
maps defined above.

In this paper we just point out a remarkable connection of the real Prony space and map-
ping with hyperbolic polynomials, and Vieta and Vandermonde mappings studied in Singularity
Theory (see [1, 13, 14, 15] and references therein).

Hyperbolic polynomials (in one variable) are real polynomials Q(z) = 2%+ Z;l:l \jz479 | with
all d of their roots real. We denote by I'y the space of the coefficients A = (A1,...,\q) C R? of all
the hyperbolic polynomials, and by I'y the set of A € 'y with A\; = 0, [A2] < 1. Recalling (2.3), it
is evident that all hyperbolic polynomials appear as the denominators of the irreducible fractions
in the image of RPy by SM. This shows, in particular, that the geometry of the boundary 9I'" of
the hyperbolicity domain I' is important in the study of the real Prony map PM: it is mapped
by PM to the boundary of the solvability domain of the real Prony problem. This geometry
has been studied in a number of publications, from the middle of 1980s. In [13] V. P. Kostov
has shown that T’ possesses the Whitney property: there is a constant C' such that any two
points A1, Ay € I' can be connected by a curve inside I' of the length at most C|[Ay — Ay ||. “Vieta
mapping” which associates to the nodes z1 < x5 < - -+ < x4 the coefficients of Q(z) having these
nodes as the roots, is also studied in [13]. In our notations, Vieta mapping is the composition
of the Stieltjes mapping SM with the projection to the coefficients of the denominator.

In [1] V.I.Arnold introduced and studied the notion of maximal hyperbolic polynomial, rel-
evant in description of I. Furthermore, the Vandermonde mapping V : R? — R¢ was defined
there by

Y1 = a121 + ... + aq%q,

— d d
Yd = 0127 + ... + aqxy,

with aq,...,aq fixed. In our notations V is the restriction of the Prony mapping to the pairs
(w,g) € RP4 with the coefficients of ¢ in the standard basis of RV, fixed. It was shown in [1]
that for ai,...,aq > 0V is a one-to-one mapping of [],; to its image. In other words, the first d
moments uniquely define the nodes 1 < x5 < --- < x4. For ay, ..., aq with varying signs, this is
no longer true in general. This result is applied in [1] to the study of the colliding configurations.
Next, the “Vandermonde varieties” are studied in [1], which are defined by the equations

a1ry +...+aqgrqy = oq,
{<d
ale{ + ...+ adxfl = Qy.
It is shown that for ai,...,aq > 0 the intersections of such varieties with [], are either con-

tractible or empty. Finally, the critical points of the next Vandermonde equation on the Van-
dermond variety are studied in detail, and on this base a new proof of Kostov’s theorem is
given.

We believe that the results of [1, 13] and their continuation in [14, 15] and other publications
are important for the study of the Prony problem over the reals, and we plan to present some
results in this direction separately.
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APPENDIX A. PROOF OF THEOREM 3.5

Recall that we are interested in finding conditions for which the Taylor mapping 7M : Sg — Ta
is invertible. In other words, given

2d—1 1\ *+1
S(z) = -
() Z 1k (z) ’
k=0
we are looking for a rational function R (z) € Sg such that
d dsy
S(z)—R(z):ﬁ—&-m—k.... (A.1)
Write R (z) = ZE’Z; with @ (2) = Z;'lzo ¢;7) and P(z) = Y924 biz'. Multiplying (A.1) by
Q (z), we obtain
€1 €9
Q(z)S(z)—P(z):Zd+1+Zd+2+.... (A.2)

Proposition A.1. The identity (A.2), considered as an equation on P and Q with
deg P < deg@ < d,
always has a solution.

Proof. Substituting the expressions for S, P and @ into (A.2) we get

dy (Mo |, M1 -1 _ _©1
(c0—|—clz+~-~+cdz)<7+Z—2+...)—b0—---—bd_1z _zd+1+“” (A.3)
The highest degree of z in the left hand side of (A.3) is d—1. So equating to zero the coefficients
of z° in (A.3) for s=d—1,...,—d we get the following systems of equations:
[ 0 0 0 mo Cl_ bd—l-
0 0 mg m 2 ba—2
= (A)
lmo - ma mq—1] [cd] bo |
From this point on, the equations become homogeneous:
[ mo ™y my [co 0]
my ma Md41 c1 0
= (A k)
|Ma—1 Mg mad—1]| |cd 0]

The homogeneous system (A.xx) has the Hankel-type d x (d + 1) matrix My = (m,,;) with

0<?1<d—1and 0 < j < d. This system has d equations and d + 1 unknowns cg, . .
Consequently, it always has a nonzero solution cy, ..
o, ---,¢q of @ into the equations (A.x) we find the coefficients by, ..

., Cq-

.,¢q. Now substituting these coefficients

., bg—1 of the polynomial

P, satisfying (A.x). Notice that if ¢; = 0 for j > ¢ + 1 then it follows from the structure of the
equations (A.x) that b; = 0 for j > £. Hence these P, provide a solution of (A.2), satisfying
deg P < deg @ < d, and hence belonging to Sy.

O

However, in general (A.2) does not imply (A.1). This implication holds only if deg@ = d.
The following proposition describes a possible “loss of accuracy” as we return from (A.2) to (A.1)

and deg Q) < d:
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Proposition A.2. Let (A.2) be satisfied with the highest nonzero coefficient of Q being cp, £ < d.

Then
P(z) d; da

S(2) - Q(z) ~ zdtir T Javere T (A4)

Proof. We notice that if the leading nonzero coefficient of @ is ¢, then we have

1 1 1 1 1
Q ?(m) = g(fo+f1;+...).
So multiplying (A.2) by % we get (A.4). ;

Proof of Theorem 3.5. Assume that the rank of M, is r < d, and that |M,| # 0. Let us find
a polynomial Q(z) of degree r of the form Q(z) = z" + Z;;é cjz?, whose coefficients satisfy
system (A.xx). Put ¢, = (co,...,¢r—1,1)7 and consider a linear system M,c, = 0. Since by
assumptions |M,.| # 0, this system has a unique solution. Extend this solution by zeroes, i.e.,
put cg = (co,...,cr—1,1,0,...,0)7. We want c, to satisfy (A.xx), which is Mycg = 0. This fact
is immediate for the first  rows of M. But since the rank of M, is r by the assumption, its
other rows are linear combinations of the first » ones. Hence ¢y satisfies (A.xx).

Now the equations (A.x) produce a polynomial P(z) of degree at most »r — 1. So we get a ra-
tional function R(z) = SE’Z; € S, C S, which solves the Padé problem (A.2), with deg Q(z) = 7.
Write R(z) = 22 ax(1)*1. By Proposition A.2 we have m; = oy, till k =d + 7 — 1.

Now, the Taylor coefficients «y, of R(z) satisfy a linear recurrence relation

mk:—chmk_s, k=r,r+1,.... (A.5)
s=1
Considering the rows of the system Myc, = 0 we see that my, satisfy the same recurrence relation
(A.5) till k =d+r — 1 (we already know that my = ay, till £ = d +r — 1). We shall show that
in fact my, satisfy (A.5) till k = 2d — 1.
Consider a d x r matrix M, formed by the first » columns of My, and denote its row vectors

by vi = (mio,...,Mir—1), i =1,...,d — 1. The vectors v; satisty
ks
VZ-:—ZCSVZ-,S7 i=r,...,d—1, (A.6)
s=1
since their coordinates satisfy (A.5) till k = d+r—1. Now vq, ..., Vv,_1 are linearly independent,
and hence each v;, i =7,...,d — 1, can be expressed as
r—1
Vi, = Z'yi,svs~ (A7)
s=0
Denote by v; = (mi,...,miq), ¢ =1,...,d — 1 the row vectors of M,. Since by assumptions

the rank of My is r, the vectors ¥; can be expressed through the first r of them exactly in the
same form as v;:

r—1
Vi=) YisVe, i=r...,d—1L (A.8)
s=0

Now the property of a system of vectors to satisfy the linear recurrence relation (A.6) depends
only on the coefficients ~; s in their representation (A.7) or (A.8). Hence from (A.6) we conclude
that the full rows v; of M, satisfy the same recurrence relation. Coordinate-wise this implies
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that my, satisfy (A.5) till & = 2d — 1, and hence my = oy, till K = 2d — 1. So R(z) solves the
original Problem 3.1.
In the opposite direction, assume that R(z) solves Problem 3.1, and that the representation

R(2) = ggg € S, C 8y is irreducible, i.e., deg@ = r. Write Q(z) = 2" + E;;l ¢jz?. Then my,
being the Taylor coefficients of R(z) till k = 2d — 1, satisfy a linear recurrence relation (A.5):
My = — Y g CsMi—s, k =r,r+1,...,2d — 1. Applying this relation coordinate-wise to the
rows of My we conclude that all the rows can be linearly expressed through the first r ones. So
the rank of Md is at most r.

It remains to show that the left upper minor |M,| is non-zero, and hence the rank of M, is
exactly r.

By Proposition 3.3, if the decomposition of R (z) in the standard basis is

s dj 11 o |
R(z) = Zzaﬂ'vé—lL@ZD"
j=1¢=1 (z — ;)
where Y7, d; = r and {z;} are pairwise distinct, then the Taylor coefficients of R (z) are
given by (1.5). Clearly, we must have ajq;, 1 # 0 for all j = 1,...,s, otherwise deg@ < r, a
contradiction. Now consider the following well-known representation of M, as a product of three
matrices (see e.g. [7]):

My =V (21, dr,.. s dy) x dig {47}, x V (@r,di, s dy)T (A.9)

where V' (...) is the confluent Vandermonde matrix (4.1) and each A; is the following d; x d;
block:

as,0 aj,1 T p 1' o Aj,d;—1
. 3= )
.1 (dj—z)amdj—l 0
def
Aj = .. ... 0
d;—1
( 32 )aj,dj—l 0 0
aj.d;—1 0 0

The formula (A.9) can be checked by direct computation. Since {x;} are pairwise distinct and
aja;—1 # 0 forall j =1,...,s, we immediately conclude that |M;| # 0.
This finishes the proof of Theorem 3.5. O
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