
Journal of Singularities
Volume 10 (2014), 147-156

Proc. of 12th International Workshop
on Singularities, São Carlos, 2012

DOI: 10.5427/jsing.2014.10i

ON THE EULER CHARACTERISTIC OF REAL MILNOR FIBRES

HELMUT A. HAMM

Abstract. We study the Milnor fibres of a real analytic mapping defined on a real analytic

space which has an isolated critical point. In particular we look at the Euler characteristic.
We discuss the global case, too.

0. Introduction

Mappings f : Rn → Rk with an isolated singularity have been already studied by J. Milnor
[M]. It is not important whether one works in the real algebraic or real analytic category, here we
prefer the real analytic one. We replace Rn by a germ of a real analytic space with an isolated
singularity, introduce a kind of Milnor fibration and study the Euler characteristic of its fibres.
Finally we pass shortly to the global case.

Part of the results has been announced in [H].

1. The real Milnor fibration

Let f : (X, 0) → (Rk, 0) be a real analytic mapping between real analytic space germs with
an isolated singularity, which means that f : X \ {0} → Rk is a submersion between manifolds.
Let X be purely n-dimensional. We may suppose that (X, 0) is embedded in (RN , 0). Let
Dε := {x ∈ RN | ‖x‖ ≤ ε}, Sε := ∂Dε. Let L := X ∩ Sε and K := f−1({0}) ∩ Sε, 0 < ε� 1, be
the links of (X, 0) and (f−1({0}), 0). Note that X \ {0}, L and K are manifolds which are not
necessarily orientable!

Similarly, let Bα := {t ∈ Rk | ‖t‖ ≤ α}.

Theorem 1.1:

a) Let 0 < α � ε � 1. Then f : X ∩ Dε ∩ f−1(Bα \ {0}) → Bα \ {0} is a locally trivial
fibration (“Milnor fibration”).

b) The mapping f : X ∩ Sε ∩ f−1(Bα) → Bα is a locally trivial, hence a trivial fibration, so
∂Ft is diffeomorphic to K for every “Milnor fibre” Ft = f−1({t}) ∩Dε.

Proof. Note that we have supposed that 0 is an isolated singularity of f . In particular f−1(0) has
an isolated singularity at 0, and Sε is transversal to f−1(0), 0 < ε� 1. Hence Sε is transversal
to f−1(t) for ‖t‖ ≤ α, 0 < α� ε� 1. �

The base space in a) is connected if k ≥ 2 but not if k = 1, so we treat these cases separately.

Note that we have a lemma which goes back to Milnor ([M] Lemma 11.3) in the case X = Rn:
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Lemma 1.2: For 0 < α� ε� 1 we have a homeomorphism

X ∩
(
(Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα \ {0}))

)
≈ L \K ,

hence a homotopy equivalence X ∩Dε ∩ f−1(∂Bα) ∼ L \K.

So we use the symbol ≈ in the case of a homeomorphism and ∼ in the case of a homotopy
equivalence.

Proof. We have assumed X ⊂ RN . Put φ, ψ : X → R : φ(x) := ‖f(x)‖2, ψ(x) := ‖x‖2.
By the Curve Selection Lemma we know that there are no x ∈ Dε ∩ X \ f−1(0) such that
there is a λ ≤ 0 with dψx = λ dφx if 0 < ε � 1. Therefore we can find on X \ f−1(0)
a vector field v such that dψx(v(x)) > 0, dφx(v(x)) = 1 for ‖x‖ ≤ ε. Using the flow we can
construct the desired homeomorphism. Furthermore X∩Dε∩f−1(∂Bα) is a deformation retract
of X ∩ ((Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα \ {0}))). �

According to Milnor [M], p. 99, the homotopy equivalence can in general not be chosen as to

be fibre preserving with respect to x 7→ f(x)
‖f(x)‖ .

2. The Milnor fibre of a real analytic mapping (k ≥ 2)

First we suppose k ≥ 2. Then we can speak of the typical Milnor fibre F because all Milnor
fibres are diffeomorphic.

Standard example: k = 2, n = 2m, f : (Cm, 0) → (C, 0) with isolated singularity. For the
more general case see e.g. [M] p. 103, and [CL].

In this paper we look at cohomology with integral coefficients.

Theorem 2.1: We have long exact sequences:

. . .→ Hm(L \K)→ Hm(F )→ Hm+2−k(F )→ Hm+1(L \K)→ . . . (Wang sequence),

. . .→ Hm−1(K)→ Hm(F, ∂F )→ Hm(F )→ Hm(K)→ . . . ,

. . .→ Hm(L)→ Hm(F )→ Hm−k+2(F, ∂F )→ Hm+1(L)→ . . .

Note that the second and third long exact sequences are the ones for the pair (F, ∂F ) and the
pair (L,F ): we can embed F in L.

For k = 2 the first and third sequences read:

. . .→ Hm(L \K)→ Hm(F )
h∗−id→ Hm(F )→ Hm+1(L \K)→ . . . and

. . .→ Hm(L)→ Hm(F )
V ar∗→ Hm(F, ∂F )→ Hm+1(L)→ . . .

Here h : F → F is “the” monodromy.

Proof. (i) For the Wang sequence, see Spanier [S] p. 456.

Note that L \K may be replaced by X ∩Dε ∩ f−1(∂Bα), see Lemma 1.2, and

f : X ∩Dε ∩ f−1(∂Bα)→ ∂Bα

is a locally trivial fibration.

(ii) In the second exact sequence we may replace K by ∂F ; see Theorem 1.1b).
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(iii) As for the third exact sequence, note that we may replace L by

X ∩
(
(Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα))

)
Let D be an open “ball” in ∂Bα, t ∈ D. Then:

Hm+1(L,F ) ' Hm+1
(
X ∩ ((Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα))), X ∩Dε ∩ f−1(D̄)

)
' Hm+1

(
X ∩ ((Dε ∩ f−1(∂Bα)) ∪ (Sε ∩ f−1(Bα))), X ∩ ((Dε ∩ f−1(D̄)) ∪ (Sε ∩ f−1(Bα)))

)
' Hm+1

(
X ∩Dε ∩ f−1(∂Bα \D), X ∩ ((Dε ∩ f−1(∂D)) ∪ (Sε ∩ f−1(∂Bα \D)))

)
' Hm+1((F, ∂F )× (∂Bα \D, ∂D)) ' Hm+2−k(F, ∂F ) .

In fact, for the first isomorphism note that L ≈ X∩((Dε∩f−1(∂Bα))∪(Sε∩f−1(Bα))), similarly
as in Lemma 1.2. Furthermore, F is a deformation retract of X ∩Dε ∩ f−1(D̄).
For the second one, note that f |Sε ∩ f−1(Bα) is trivial, see Theorem 1.1b), so Sε ∩ f−1(D) is a
strong deformation retract of Sε ∩ f−1(Bα).
The third isomorphism is established by excision, the fourth one is due to the fact that

f : Dε ∩ f−1(∂Bα \D)→ ∂Bα \D

is a trivial fibration. The last one follows from the Künneth formula. �

Since one cannot expect good connectivity properties in the real case, let us look at the Euler
characteristic.

Corollary 2.2:

a) χ(L) = 0 if n is even, χ(L) = 2χ(F ) if n is odd,

b) χ(K) = 0 if n− k is even, χ(K) = 2χ(F ) if n− k is odd.

Proof. First let us observe the following: Suppose that M is a compact manifold with boundary
of dimension m. Then χ(M,∂M) = (−1)mχ(M). In particular, χ(M) = 0 if M is closed and m
is odd.
This is obvious by Poincaré duality, in the non-orientable case with coefficients in Z/2Z.
a) Suppose that n is even. Then L is a closed manifold of odd dimension, hence χ(L) = 0.
Therefore we assume now that n is odd. By the third exact sequence and Poincaré duality we
have

χ(L) = χ(F )− (−1)kχ(F, ∂F ) = χ(F )− (−1)nχ(F ) = 2χ(F )

b) Similarly, χ(K) = 0 if n− k is even. So suppose that n− k is odd. Then

χ(K) = χ(F )− χ(F, ∂F ) = χ(F )− (−1)n−kχ(F ) = 2χ(F ).

�

So χ(F ) can be expressed by the Euler characteristic of a link except if k and n are both even.
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3. The Milnor fibres of a real analytic function (k = 1)

Now let us switch to the case k = 1. Then we have two typical Milnor fibres: F+ (resp. F−),
corresponding to Ft with t > 0 (resp. t < 0).

Theorem 3.1:

a) Hm(L \K) ' Hm(F+)⊕Hm(F−).
b) We have long exact sequences:

. . .→ Hm−1(K)→ Hm(F+, ∂F+)→ Hm(F+)→ Hm(K)→ . . . ,

. . .→ Hm(L)→ Hm(F+)⊕Hm(F−)→ Hm(K)→ . . . and

. . .→ Hm(L)→ Hm(F+)→ Hm+1(F−, ∂F−)→ . . .

The middle exact sequence is a Mayer-Vietoris sequence, of course. As a consequence,

χ(L) + χ(K) = χ(F+) + χ(F−).

Proof. Hm(L,F+) ' Hm(F−, ∂F−) by excision. The rest is clear. �

Corollary 3.2: If n is even, we have

χ(F+) = χ(F−), χ(L) = 0, χ(K) = 2χ(F+).

If n is odd,

χ(L) = χ(F+) + χ(F−), χ(K) = 0.

Proof. If n is even, χ(L) = 0, hence χ(F+) = −χ(F−, ∂F−) = χ(F−). If n is odd, χ(K) = 0.
The rest is clear. �

It is difficult to calculate individual cohomology groups but:

Corollary 3.3: a) Suppose that n = 2m+ 1,m ≥ 1 and that F+ and F− have the homotopy
type of a bouquet of m-spheres. Then H0(L) = Z, H l(L) = 0 for l 6= 0,m, 2m, and Hm(L) is free
abelian. Furthermore H2m(L) ' Z/2Z if m = 1 and L is non-orientable, otherwise H2m(L) ' Z.
b) Suppose that n = 2m + 2,m ≥ 1 and that F+ or F− has the homotopy type of a bouquet
of m-spheres. Then H0(K) = Z, H l(K) = 0 for l 6= 0,m, 2m, and Hm(K) is free abelian.
Furthermore H2m(K) ' Z/2Z if m = 1 and K is non-orientable, otherwise H2m(K) ' Z.

Proof. We know that K 6= ∅, otherwise F+ and F− are compact which gives the wrong homology.
a) The exact sequence

0→ H0(L)→ H0(F+)⊕H0(F−)→ H0(K)

shows that L is connected. This implies the statement for m = 1.
In the case m ≥ 2 we know that F+ and F− are simply connected, hence orientable. So we have
for 0 < l < 2m an exact sequence

H l−1(F+)→ H2m−l(F−)→ H l(L)→ H l(F+)→ H2m−1−l(F−)

because H2m−l(F−) ' H l(F−, ∂F−).
For l 6= m we deduce H l(L) = 0. For l = m we obtain

0→ Hm(F−)→ Hm(L)→ Hm(F+)→ 0,

so Hm(L) is free abelian. Of course, H2m(L) ' Z.
b) Assume that the hypothesis is true for F+. Again, F+ is orientable if m ≥ 2. Note that

H2m−l(F+) ' H l+1(F+, ∂F+).
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Suppose first that F+ is orientable. Then we have an exact sequence

H0(F+)→ H0(K)→ H2m(F+).

Since H2m(F+) = 0 we obtain that K is connected.
If F+ is non-orientable we have that m = 1, and the universal covering of F+ is contractible.

Therefore the orientation covering of F+ has the homotopy type of a bouquet of 1-spheres, too.
We conclude as before that its boundary is connected. So K is connected, too.

So we must only look at the case m ≥ 2. For 0 < l < 2m, we have an exact sequence

H2m+1−l(F+)→ H l(F+)→ H l(K)→ H2m−l(F+)→ H l+1(F+)

For l 6= m we have
H l(F+) = H2m−l(F+) = 0

hence H l(K) = 0.
For l = m we have an exact sequence

0→ Hm(F+)→ Hm(K)→ Hm(F+)→ 0

which implies that Hm(K) is free abelian. �

Example 3.4: a) g : (Cm+1, 0)→ (C, 0) holomorphic with isolated singularity,

X := Cm+1 ∩ {Img = 0}, f := Re g, and n = 2m+ 1.

We obtain that L := Sε ∩ {Img = 0} is a compact manifold of dimension 2m,

H0(L) = H2m(L) = Z,
Hm(L) free abelian of rank 2µ, µ = Milnor number of g.

b) X = Cm+1, f = Img, which leads with K instead of L to the same result as before,
because the Milnor fibres of f and g have the same homotopy type. See Lemma 5.1 below.

4. Euler characteristic of the real Milnor fibre

Using resolution of singularities we can calculate the Euler characteristic of the Milnor fibre(s).

In the situation of section 2, we can put Y := X ∩ {f1 = . . . = fk−1 = 0}. Then the Milnor
fibres of fk : (Y, 0) → (R, 0) coincide with the one of f : (X, 0) → (Rk, 0), so we can reduce to
the case k = 1 with F+ ≈ F−. So it is sufficient to look at the case k = 1 (cf. Example 3.4a).

Let us assume k = 1. Choose an embedded resolution π : X ′ → X of f−1({0}) ⊂ X. Then
(f ◦ π)−1({0}) is a divisor with normal crossing, it has a natural stratification. Let Sli, l being
the codimension of the stratum, be the strata contained in π−1({0}). Locally at a point of this
stratum, f ◦ π = εxν11 · . . . · x

νl
l with respect to suitable local coordinates, ε = ±1.

Put:
αli := 2l−1 if there is a j such that νj is odd,
αli := 2l if ν1, . . . , νl are even, ε = 1,
αli := 0 if ν1, . . . , νl are even, ε = −1.

Theorem 4.1: χ(F+) =
∑
l,i αli(−1)n−lχ(Sli).

Proof. (cf. [CF] in the case X = Rn) Let Ul be a suitable closed neighbourhood of the union of
strata of codimension ≥ l. More precisely, put

Ul := {x ∈ X ′ |ψl(x) ≤ εl},
where ψl : X ′ → [0,∞[ is a real analytic function whose zero set is the union of strata of
codimension ≥ l, and where 0 < ε1 � ε2 � . . . � εn � 1, and suppose 0 < t � ε1. Put
U l := Ul ∪ . . . ∪ Un. Then each connected component of Ul \ U l+1 is the total space of a
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topological fibre bundle over Sli \ U l+1, the fibre being the normal slice with respect to Sli for
some i. Note that Sli \U l+1 has the same homotopy type as Sli. The normal slice N of Sli at p
is homeomorphic to Rl. Near p we can write f ◦ π as above. Then

N ∩ {f ◦ π = t} = {x ∈ Rl | εxν11 · . . . · x
νl
l = t}, 0 < t� 1.

If there is a j such that νj is odd, we may assume j = l, then we can write the right hand side
as the graph of a function defined on (R∗)l−1. This set is the disjoint union of 2l−1 contractible
components.

If all νj are even, ε = −1, the set is empty.

If all νj are even, ε = 1, we get the disjoint union of two graphs of functions defined on the
same set as above, so we obtain 2l contractible components.

Therefore the Euler characteristic of N ∩ {f ◦ π = t}, t > 0, is αli.

Now
F+ ∼ Dε ∩X ∩ {f > 0} ∼ π−1(Dε ∩X ∩ {f > 0})

If we vary ε (resp. ε1, . . . , εn) we see that

π−1(Dε ∩X ∩ {f > 0}) ∼ U1 ∩ {f ◦ π > 0} ∼ U1 ∩ {f ◦ π = t}

Furthermore, U1 =
·⋃

(Ul − U l+1), hence

χ(F+) = χ({f ◦ π = t} ∩ U1) =
∑
l

χc({f ◦ π = t} ∩ (Ul \ U l+1))

=
∑
l,i

αliχc(Sli) =
∑
l,i

αli(−1)n−lχ(Sli)

Here χc is the Euler characteristic with compact support. �

It is easier to calculate χ(F+) + χ(F−):

Corollary 4.2: χ(F+)+χ(F−) =
∑
l,i 2l(−1)n−lχ(Sli), and so, if χ(F+) = χ(F−) (in particular

if n is even), then

χ(F+) =
∑
l,i

2l−1(−1)n−lχ(Sli).

The first statement of the corollary can also be proved directly, without using the local
description of f ◦ π: note that (R∗)l has 2l contractible components.

By the way, we can calculate χ(K) and χ(L) using the same resolution:

Let us denote by S′li those strata Sli which are contained in the strict transform of f−1(0),
i.e., in the closure of π−1(f−1({0}) \ {0}), S′′li the remaining ones. Then:

χ(K) =
∑

2l−1(−1)n−lχ(S′li),

χ(L) =
∑

2l−1(−1)n−lχ(S′li) +
∑

2l(−1)n−lχ(S′′li)

which agrees with the formula χ(L) + χ(K) = χ(F+) + χ(F−) proved before (Theorem 3.1).

In the case of L, note that in the normal slice we have to look at N \ π−1(0) which differs
from N \ (f ◦ π)−1(0) if we are at a point of the strict transform of f = 0: then we have 2l−1

instead of 2l contractible components.
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Using the formula for χ(K) we obtain an easier formula for χ(F+) if n is even: Then

χ(F+) = χ(F−) =
∑

2l−2(−1)n−lχ(S′li),

because χ(K) = 2χ(F+).

5. Comparison of Milnor fibres of mappings (resp. functions)

There is another connection between the cases k ≥ 2 and k = 1 in section 2 (resp. 3):

Let us take up the assumptions of section 2 (in particular, k ≥ 2) and write χ(f) instead of
χ(F ). Similarly in 3: χ(f)+ instead of χ(F+).

Lemma 5.1: For 0 < α � ε � 1, the inclusion of X ∩Dε ∩ {f1 = . . . = fk−1 = 0, fk = α} in
X ∩Dε ∩ f−1k (α) is a homotopy equivalence.

Proof. Let φ, ψ be defined as in the proof of Lemma 1.2. Compare

X ∩Dε ∩ {‖f‖ ≤ α, fk > 0}

with X ∩Bε ∩ {fk > 0}. Choose a vector field v such that, on X ∩Dε ∩ {‖f‖ ≥ α}:

dφx(v(x)) = 1, dψx(v(x)) > 0,

and near fk = 0 : (dfk)x(v(x)) = 0. This is possible: assume that we have a point p such that
dψp = λdφp with λ < 0, we get a contradiction because of the Curve Selection Lemma. Similarly,
suppose that near fk = 0 there is a p, ‖f(p)‖ ≥ α, such that dψp = λdφp + µ(dfk)p with λ ≤ 0
we would get also such a point with fk(p) = 0, which contradicts the Curve Selection Lemma.
So we obtain that

X ∩Dε ∩ {‖f‖ ≤ α, fk > 0} ∼ X ∩Dε ∩ {fk > 0}
Moreover, f : X ∩Dε ∩ {‖f‖ ≤ α, fk > 0} → {t ∈ Bα | tk > 0} is a trivial fibration, so

X ∩Dε ∩ {‖f‖ ≤ α, fk > 0} ∼ X ∩Dε ∩ {f = (0, . . . , 0, α)}

Now we can find a vector field w on {fk > 0} such that, on X ∩Dε ∩ {fk > 0}:

(dfk)x(w(x)) = 1, dψx(w(x)) > 0,

because of the Curve Selection Lemma. Therefore

X ∩Dε ∩ {fk > 0} ∼ X ∩Dε ∩ {0 < fk ≤ α}.

Finally, X has an isolated singularity at 0, so fk : X ∩Dε ∩ {0 < fk ≤ α} →]0, α] is a trivial
fibration, hence

X ∩Dε ∩ {0 < fk ≤ α} ∼ X ∩Dε ∩ {fk = α}.
�

In the case of X = Rn this is a consequence of a conjecture by J.Milnor [M], p. 100, see also
[ADD].

Corollary 5.2: χ(f) = χ(f1)+ = χ(f1)− = . . . = χ(fk)+ = χ(fk)−.

Now let us turn to the special case X = Rn. Then we have the following formula:



154 HELMUT A. HAMM

Theorem 5.3: (G.Khimshiashvili [K]) If k = 1, χ(f)+ = 1 − (−1)ndeg0∇f , where ∇f is the

gradient of f and deg0∇f is the topological degree of ∇f|∇f | : Sε → S1.

Replacing f by −f we obtain that χ(f)− = 1− deg0∇f
Note that L is a sphere in our case. This implies altogether:

Corollary 5.4: ([ADD])

a) χ(f) = 1− deg0∇f1 = . . . = 1− deg0∇fk.

b) If n is odd, deg0∇f1 = . . . = deg0∇fk = 0, so χ(f) = 1.

Proof. b) By the Corollary before, χ(fi)+ = χ(fi)−, so according to Khimshiashvili: deg0∇fi = 0,
so χ(f) = χ(fi)+ = 1. �

6. Global analogue

a) Now let us pass to the global case. Let X be a compactifiable real analytic (e.g. a real
algebraic) subspace of RN which is purely n-dimensional, f : X → Rk a compactifiable real
analytic mapping. Let C be the set of critical points of f ; recall that singular points of X are
automatically critical points of f . Assume that

(i) the set of critical points of f which are contained in f−1({0}) is compact,

(ii) for 0 < α� 1 the set C ∩ f−1(Bα \ {0}) is closed in X, i.e. there is no convergent sequence
(pn)→ p∗ of critical points of f such that f(pn) 6= 0 for all n, p∗ ∈ X, f(p∗) = 0.

Then we get that for 0 < α� 1
R � 1 the mapping

f : X ∩DR ∩ f−1(Bα \ {0})→ Bα \ {0}

is a locally trivial fibration:
Assume R� 0. Then X is smooth along X∩SR, SR intersects X transversally, and f |X∩SR

has no critical point which is mapped to 0. Therefore f |X ∩SR has no critical points above Bα.
Finally, f has no critical points in X ∩DR ∩ f−1(Bα \ {0}).

As at the beginning of section 4 we may reduce to the case k = 1. So assume k = 1; then we
get fibres F+ and F−.

Let us fix a compactification f̄ : X̄ → R and let π : X̄ ′ → X̄ be an embedded resolution of
f̄−1(0) ∪ C ∪X∞ ⊂ X̄ where X∞ := X̄ \X. We can achieve that

π : π−1(f−1({0}) \ C)→ f−1({0}) \ C

is an isomorphism. Put X ′ := π−1(X). We have a natural stratification of (f̄ ◦ π)−1(0) such
that π−1(f−1({0})) is a union of strata. Locally at a point of such a stratum of codimension l
in X̄ ′, f̄ ◦ π = εxν11 · . . . · x

νλ
λ , λ ≤ l, with respect to suitable local coordinates, ε = ±1.

Put:
αli := 2l−1 if there is a j such that νj is odd,

αli := 2l if ν1, . . . , νλ are even, ε = 1,

αli := 0 if ν1, . . . , νλ are even, ε = −1.

Then we have, similarly as in section 4:

Theorem 6.1: χ(F+) =
∑
l,i αli(−1)l+1χ(Sli), where the sum extends over all strata contained

in π−1(f−1({0})).
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Proof. Let Ul be a suitable closed neighbourhood of the union of (X̄ ′ \X ′)∩ (f̄ ◦ π)−1({0}) and
all strata of π−1(f−1({0})) of codimension ≥ l, U l := Ul ∪ . . . Un+1. Then

χ(F+) = χ((f̄ ◦ π)−1({t}) \ Un+1) = (−1)n−1χc((f̄ ◦ π)−1({t}) \ Un+1),

and

χc((f̄ ◦ π)−1({t}) \ Un+1) =

n∑
l=1

χc((f̄ ◦ π)−1({t}) ∩ Ul \ U l+1)

We continue similarly as in the proof of Theorem 4.1. �

We have a similar formula for K := f−1(0) ∩ SR, R� 0:
χ(K) =

∑
l,i 2l−1(−1)n−lχ(Sli), where the sum extends to all strata contained in

(X̄ ′ \X ′) ∩X ′ ∩ (f̄ ◦ π)−1(0).

If n is even, this implies a simpler formula for χ(F+) = χ(F−) because

χ(K) = 2χ(F+) = 2χ(F−) :

χ(K) = χ(∂F+) = χ(F+)− χ(F+, ∂F+) = 2χ(F+)

because of Poincaré duality. Similarly for F−.

b) The fibration studied in a) is not so natural because it ignores vanishing cycles at infinity.

So let us suppose instead that X is a compactifiable real analytic space, f : X → Rk compact-
ifiable real analytic, and that f is a submersive mapping between smooth spaces above Bα \ {0}
for 0 < α� 1. Let f̄ : X̄ → Rk be a compactification of f . Put X∞ := X̄ \X. We can stratify
X̄ and Rk subanalytically so that X is a union of strata and f̄ is a stratified mapping.

Let T be a stratum of Rk such that T 6= {0}, 0 ∈ T . Because of Thom’s first isotopy lemma
we know that f : f−1(T )→ T defines a locally trivial fibration.

We want to calculate the Euler characteristic of the typical fibre F of this fibration. Since T
is subanalytic we can find by the Curve Selection Lemma a real analytic curve p :] − c, c[→ Rk
such that p(0) = 0, p(t) ∈ T for t > 0. We apply base change to f with respect to p. In this way
we reduce to the case k = 1. We need only to look at F+.

So let us look at the case k = 1. Then we obtain that f is a locally trivial fibration above
Bα \ {0}, we have two typical fibres F+, F−. Let π and αli be defined as in subsection a).

Theorem 6.2: χ(F+) =
∑
l,i αli(−1)l+1χ(Sli), where the sum extends over all strata of

(f̄ ◦ π)−1({0}) which are not contained in the closure of π−1(X∞ \ (f̄ ◦ π)−1({0})).

Proof. Analogous to the one of Theorem 6.1. �

Again we can find a simpler formula if n is even. First fix t, 0 < t ≤ α. For R � 1
α we

have that f−1({t}) ∩DR is a deformation retract of f−1({t}). Now we have a formula for the
boundary:

χ(f−1({t}) ∩ SR) =
∑
l,i

αli(−1)n−lχ(Sli),

where the sum extends over all strata of (f̄ ◦ π)−1({0}) which are contained in the closure of
π−1(X∞ \ (f̄ ◦ π)−1({0})).

If n is even we have that χ(f−1({t}) ∩ SR) = 2χ(f−1({t}) ∩DR) = 2χ(F+).
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c) Assume that hypothesis (i) of part a) as well as the hypothesis of b) are given. Then we
have hypothesis (ii) of part a), too. The fibrations in a) and b) may be different due to the
presence of vanishing cycles at infinity, as shown by the real version of the Broughton example.
Here is a different example where the fibres F+ and F− in b) have a different Euler characteristic:

Put X := R2, f : X → R: f(x, y) := −x(xy2 − 1).

Then f−1({0}) is the disjoint union of {x = 0}, {y < 0, x = 1
y2 }, {y > 0, x = 1

y2 };
for t > 0,

f−1({t}) =

{
x ≥ t, y = ±

√
x− t
x

}
;

for t < 0, f−1({t}) is the disjoint union of
{
x > 0, y =

√
x−t
x

}
,
{
x > 0, y = −

√
x−t
x

}
and{

t ≤ x < 0, y = ±
√
x−t
x

}
.

So χ(f−1({0})) = 3, χ(f−1({t})) = 1 for t > 0 and χ(f−1({t})) = 3 for t < 0. Note that f has
no critical points, so the fibre in a) has the same Euler characteristic as f−1({0}). Altogether,
0 is not a critical value but an atypical one.
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