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LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS IN

DE SITTER SPACE

SHYUICHI IZUMIYA AND TAKAMI SATO

Abstract. We consider the singularities of lightlike hypersurfaces along spacelike submani-
folds with general codimension in de Sitter space. As an application of the theory of Legendrian

singularities, we investigate the geometric meanings of the singularities of lightlike hypersur-
faces from the viewpoint of the contact of spacelike submanifolds with de Sitter lightcones.

1. Introduction

One of the important objects in theoretical physics is the notion of lightlike hypersurfaces
because they provide good models for different types of horizons [3, 5, 20, 23]. The lightlike
hypersurfaces are constructed as ruled hypersurfaces along spacelike submanifolds whose rulings
are the lightlike geodesics. A lightlike hypersurface is also called a light sheet in theoretical
physics (cf., [2]), which plays a principal role in the quantum theory of gravity. In this paper,
we consider the singularities of lightlike hypersurfaces along spacelike submanifolds in de Sitter
space which is one of the Lorentz space forms. There are three kinds of Lorentz space forms:
Lorentz-Minkowski space is a flat Lorentz space form, de Sitter space is a positively curved one,
and anti-de Sitter space is a negatively curved one.

On the other hand, tools in the theory of singularities have proven to be useful in the de-
scription of geometrical properties of submanifolds immersed in different ambient spaces, from
both the local and global viewpoint [6, 7, 9, 10, 11, 13, 16, 18]. The natural connection between
geometry and singularities relies on the basic fact that the contacts of a submanifold with the
models of the ambient space can be described by means of the analysis of the singularities of
appropriate families of contact functions, or equivalently, of their associated Legendrian maps
([1, 21, 24]). When working in a Lorentz space form, the properties associated to the contacts of
a given submanifold with lightcones have a special relevance. In [4, 8, 11, 17], a framework for the
study of spacelike submanifolds with codimension two in Lorentz space forms was constructed,
and a Lorentz invariant concerning their contacts with models related to lightlike hyperplanes
was discovered. The geometry described in this framework is called the lightlike geometry of
spacelike submanifolds with codimension two. By using the invariants of lightlike geometry,
the singularities of lightlike hypersurfaces along spacelike submanifolds with codimension two
in Lorentz-Minkowski space or de Sitter space were investigated in [10, 12, 16]. However, the
situation is rather complicated for the general codimensional case. The main difference from the
Euclidean space (or, Hyperbolic space) case is the fiber of the canal hypersurface of a spacelike
submanifold is neither connected nor compact. In order to avoid the above difficulty, we arbi-
trarily choose a timelike future directed unit normal vector field along the spacelike submanifold,
which always exists for an orientable submanifold (cf., [13, 14, 15]). Then we construct the unit
spherical normal bundle relative to the above timeline unit normal vector field, which can be
considered as a codimension two spacelike canal submanifold of the ambient Lorentz space form.
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Therefore, we can apply the idea of the lightlike geometry of spacelike submanifolds with codi-
mension two in Lorentz space-forms. Recently, we have applied this framework and investigated
the geometric meanings of the singularities of lightlike hypersurfaces along spacelike subman-
ifolds in Lorentz-Minkowski space or anti-de Sitter space from the viewpoint of the theory of
Legendrian singularities [14, 15]. In this paper, we consider spacelike submanifolds with general
codimensions in de Sitter space applying an idea similar to [14, 15].

In §2 the basic notions of Lorentz-Minkowski space are described. We explain the differential
geometry of spacelike submanifolds with general codimension in de Sitter space in §3. The
notion of lightlike hypersurfaces is introduced in §4 and investigated the basic properties. In §5
we investigate the geometric meanings of the singularities of lightlike hypersurfaces in de Sitter
space from the viewpoint of the theory of contact with de Sitter lightcones and the theory of
Legendrian singularities. We review the classification result of Kasedou [17] on singularities of
lightlike hypersurfaces along spacelike surfaces in de Sitter 4-space in §5.

2. Basic notions

In this section we prepare basic notions on Lorentz-Minkowski space. Let Rn+1 be an (n+1)-
dimensional cartesian space. For any vectors x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1,
the pseudo scalar product of x and y is defined by 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. The space

(Rn+1, 〈, 〉) is called Lorentz-Minkowski (n + 1)-space and denoted by Rn+1
1 . We say that a

vector x in Rn+1
1 \ {0} is spacelike, lightlike or timelike if 〈x,x〉 > 0,= 0 or < 0 respectively.

The norm of the vector x ∈ Rn+1
1 is defined by ‖x‖ =

√
|〈x,x〉|. We define a hyperplane with

pseudo normal v by HP (v, c) = {x ∈ Rn+1
1 | 〈x,v〉 = c }, where v ∈ Rn+1

1 \ {0} and c is
a real number. We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike
hyperplane if v is timelike, spacelike or lightlike respectively. We have the following three kinds
of pseudo-spheres in Rn+1

1 : The hyperbolic n-space is defined by

Hn(−1) = {x ∈ Rn+1
1 | 〈x,x〉 = −1},

the de Sitter n-space by
Sn1 = {x ∈ Rn+1

1 |〈x,x〉 = 1 }
and the (open) lightcone by

LC∗ = {x ∈ Rn+1
1 \ {0}|〈x,x〉 = 0 }.

We also define LCλ0
= {x ∈ Rn+1

1 |〈x − λ0,x − λ0〉 = 0 } which is called a lightcone with the
vertex λ0.

For any x1,x2, . . . ,xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en
x10 x11 · · · x1n
x20 x21 · · · x2n
...

... · · ·
...

xn0 xn1 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣
,

where e0, e1, . . . , en is the canonical basis of Rn+1
1 and xi = (xi0, x

i
1, . . . , x

i
n).

3. Differential geometry on spacelike submanifolds in de Sitter space

In [16] Kasedou has investigated differential geometry of spacelike submanifolds in de Sitter
space from the viewpoint of contact with de Sitter hyperhorospheres. Here we construct another
framework on differential geometry of spacelike submanifolds in de Sitter space. Let Rn+1

1 be
an oriented and time-oriented space. We choose e0 = (1, 0, . . . , 0) as a future timelike vector



LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS 159

field. We consider de Sitter n-space Sn1 ⊂ Rn+1
1 . Let X : U −→ Sn1 be a spacelike embedding

of codimension k, where U ⊂ Rs (s + k = n) is an open subset. We also write M = X(U)
and identify M and U through the embedding X as usual. Since M is a spacelike submanifold
with codimension k+ 1 in Rn+1

1 , Np(M) is a (k+ 1)-dimensional Lorentzian subspace of TpRn+1
1

(cf.,[22]). On the pseudo-normal space Np(M), we have two kinds of k-dimensional pseudo
spheres:

Np(M ;−1) = {v ∈ Np(M) | 〈v,v〉 = −1 }
Np(M ; 1) = {v ∈ Np(M) | 〈v,v〉 = 1 },

so that we have two unit pseudo-spherical normal bundles over M :

N(M ;−1) =
⋃
p∈M

Np(M ;−1) and N(M ; 1) =
⋃
p∈M

Np(M ; 1).

Since M = X(U) is spacelike, e0 /∈ TpM. For any v ∈ TpRn+1
1 |M, we have v = v1 + v2, where

v1 ∈ TpM and v2 ∈ Np(M). If v is timelike, then v2 is timelike. Let

πN(M) : TRn+1
1 |M −→ N(M)

be the canonical projection. Then πN(M)(e0) is a future directed timelike normal vector field
along M. If we project πN(M)(e0) onto the normal space of TpM in TpS

n
1 , then we have a future

directed unit timelike normal vector field in TSn1 along M (even globally). We now arbitrarily
choose a future directed unit timelike normal vector field nT (u) ∈ Np(M ;−1) ∩ TpSn1 , where
p = X(u). Therefore we have the pseudo-orthonormal compliment (〈nT (u)〉R)⊥ in Np(M)∩TpSn1
which is a (k − 1)-dimensional subspace of Np(M). We define a (k − 2)-dimensional spacelike
unit sphere in Np(M) by NdS

1 (M)p[n
T ] = {ξ ∈ Np(M ; 1) | 〈ξ,nT (p)〉 = 〈ξ,X(u)〉 = 0 }. Then

we have a spacelike unit (k − 2)-spherical bundle over M with respect to nT defined by

NdS
1 (M)[nT ] =

⋃
p∈M

NdS
1 (M)p[n

T ].

Since we have T(p,ξ)N
dS
1 (M)[nT ] = TpM × TξNdS

1 (M)p[n
T ], we have the canonical Riemannian

metric on NdS
1 (M)[nT ] which is denoted by (Gij(p, ξ))16i,j6n−2.

On the other hand, we define a map LG(nT ) : NdS
1 (M)[nT ] −→ LC∗ by

LG(nT )(u, ξ) = nT (u) + ξ,

which we call the de Sitter lightcone Gauss image of NdS
1 (M)[nT ]. This map leads us to the

notions of curvatures. Let T(p,ξ)N
dS
1 (M)[nT ] be the tangent space of NdS

1 (M)[nT ] at (p, ξ).
Under the canonical identification

(LG(nT )∗TRn+1
1 )(p,ξ) = T(nT (p)+ξ)Rn+1

1 ≡ TpRn+1
1 ,

we have
T(p,ξ)N

dS
1 (M)[nT ] = TpM ⊕ TξSk−2 ⊂ TpM ⊕Np(M) = TpRn+1

1 ,

where TξS
k−2 ⊂ TξNp(M) ≡ Np(M) and p = X(u). Let

Πt : LG(nT )∗TRn+1
1 = TN1(M)[nT ]⊕ Rk+1 −→ TNdS

1 (M)[nT ]

be the canonical projection. Then we have a linear transformation

S`(n
T )(p,ξ) = −Πt

LG(nT )(p,ξ) ◦ d(p,ξ)LG(nT ) : T(p,ξ)N
dS
1 (M)[nT ] −→ T(p,ξ)N

dS
1 (M)[nT ],

which is called the de Sitter lightcone shape operator of NdS
1 (M)[nT ] at (p, ξ). Consider the

eigenvalues of S`(n
T )(p,ξ), (i = 1, . . . , n − 2). Then we write κ`(n

T )i(p, ξ), (i = 1, . . . , s) for

the eigenvalues whose eigenvectors belong to TpM and κ`(n
T )i(p, ξ), (i = s + 1, . . . n − 2) for



160 SHYUICHI IZUMIYA AND TAKAMI SATO

the eigenvalues whose eigenvectors belong to the tangent space of the fiber of NdS
1 (M)[nT ]. By

exactly the same arguments as those in [13, 15], we have κ`(n
T )i(p, ξ) = −1, (i = s+1, . . . n−2).

We call κ`(n
T )i(p, ξ), (i = 1, . . . , s) the de Sitter lightcone principal curvatures of M with respect

to (nT , ξ) at p ∈M.
We deduce now the lightcone Weingarten formula. Since X is a spacelike embedding, we have

a Riemannian metric (the first fundamental form ) on M = X(U) defined by

ds2 =

s∑
i=1

gijduiduj ,

where gij(u) = 〈Xui
(u),Xuj

(u)〉 for any u ∈ U. Let nS be a local section of NdS
1 (M)[nT ].

Clearly, the vectors nT (u)± nS(u) are lightlike. Here we choose nT + nS as a lightlike normal
vector field along M. We define a mapping LG(nT ,nS) : U −→ LC∗ by

LG(nT ,nS)(u) = nT (u) + nS(u).

We call it the lightcone Gauss image of M = X(U) with respect to (nT ,nS). Under the identi-
fication of M and U through X, we have the linear mapping provided by the derivative of the
lightcone Gauss image LG(nT ,nS) at each point p ∈M ,

dpLG(nT ,nS) : TpM −→ TpRn+1
1 = TpM ⊕Np(M).

Consider the orthogonal projection πt : TpM ⊕Np(M)→ Tp(M). We define

dpLG(nT ,nS)t = πt ◦ dp(nT + nS).

We call the linear transformation Sp(n
T ,nS) = −dpLG(nT ,nS)t the (nT ,nS)-shape operator

of M = X(U) at p = X(u). Let {κi(nT ,nS)(p)}si=1 be the eigenvalues of Sp(n
T ,nS), which are

called the lightcone principal curvatures with respect to (nT ,nS) at p = X(u). Then we have a
lightcone second fundamental invariant with respect to (nT ,nS) defined by

hij(n
T ,nS)(u) = 〈−(nT + nS)ui

(u),Xuj
(u)〉

for any u ∈ U. By the similar arguments to those in the proof of [11, Proposition 3.2], we have
the following proposition.

Proposition 3.1. Let {X,nT ,nS1 , . . . ,n
S
k−2} be a pseudo-orthonormal frame of N(M) with

nSk−2 = nS . Then we have the following lightcone Weingarten formula :

(a) LG(nT ,nS)ui = 〈nTui
,nS〉(nT + nS) +

∑k−3
`=1 〈(nT + nS)ui ,n

S
` 〉nS` −

∑s
j=1 h

j
i (n

T ,nS)Xuj

(b) πt ◦ LG(nT ,nS)ui
= −

∑s
j=1 h

j
i (n

T ,nS)Xuj
.

Here
(
hji (n

T ,nS)
)

=
(
hik(nT ,nS)

) (
gkj
)

and
(
gkj
)

= (gkj)
−1
.

Since 〈−(nT + nS)(u),Xuj
(u)〉 = 0, we have hij(n

T ,nS)(u) = 〈nT (u) + nS(u),Xuiuj
(u)〉.

Therefore the lightcone second fundamental invariant at a point p0 = X(u0) depends only on the
values nT (u0)+nS(u0) and Xuiuj (u0), respectively. Thus, the lightcone curvatures also depend

only on nT (u0) + nS(u0), Xui
(u0) and Xuiuj

(u0), independent of the derivation of the vector

fields nT and nS . We write κi(n
T
0 ,n

S
0 )(p0) (i = 1, . . . , s) as the lightcone principal curvatures

at p0 = X(u0) with respect to (nT0 ,n
S
0 ) = (nT (u0),nS(u0)). So we write that

hij(n
T , ξ)(u0) = hij(n

T ,nS)(u0)

and κ`(n
T )i(ξ, p0) = κi(n

T
0 ,n

S
0 )(p0), where ξ = nS(u0) for some local extension nT (u) of ξ.

Let κ`(n
T )i(p, ξ) be the eigenvalues of S`(n

T )(p,ξ), (i = 1, . . . , n− 1). Here, we write

κ`(n
T )i(p, ξ), (i = 1, . . . , s)
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for the eigenvalues belonging to the eigenvectors on TpM and

κ`(n
T )i(p, ξ), (i = s+ 1, . . . n− 1)

for the eigenvalues belonging to the eigenvectors on the tangent space of the fiber of N1(M)[nT ].
Then we have the following proposition.

Proposition 3.2. We choose a (local) pseudo-orthonormal frame {X,nT ,nS1 , . . . ,n
S
k−2} of

N(M) with nSk−2 = nS . For p0 = X(u0) and ξ0 = nS(u0), we have

κ`(n
T )i(p0, ξ0) = κi(n

T ,nS)(u0), (i = 1, . . . , s)

and κ`(n
T )i(p0, ξ0) = −1, (i = s+ 1, . . . n− 1).

Proof. Since {X,nT ,nS1 , . . . ,n
S
k−2} is a pseudo-orthonormal frame of N(M), we have

〈X(u0), ξ0〉 = 〈nT (u0), ξ0〉 = 〈nSi (u0), ξ0〉 = 0.

Therefore, we have

TξS
k−2 = 〈nS1 (u0), . . . ,nSk−2(u0)〉.

Using this orthonormal basis of Tξ0S
k−2, the canonical Riemannian metric Gij(p0, ξ0) is repre-

sented by

(Gij(p0, ξ)) =

(
gij(p0) 0

0 Ik−2

)
,

where gij(p0) = 〈Xui
(u0),Xuj

(u0)〉.
On the other hand, by Proposition 3.1, we have

−
s∑
j=1

hji (n
T ,nS)(u0)Xuj

= LG(nT ,nS)ui
(u0) = dp0LG(nT ,nS)

(
∂

∂ui

)
,

so that we have

S`(n
T )

(p0,ξ0)

(
∂

∂ui

)
=

s∑
j=1

hji (n
T ,nS)(u0)Xuj .

Therefore, the representation matrix of S`(n
T )

(p0,ξ0)
with respect to the basis

{Xu1(u0), . . . ,Xus(u0),nS1 (u0), . . . ,nSk−2(u0)}

of T
(p0,ξ0)

(NdS
1 (M)[nT ]) is of the form(

hji (n
T ,nS)(u0) ∗

0 −Ik−2

)
.

It follows that the eigenvalues of this matrix are λi = κi(n
T ,nS)(u0), (i = 1, . . . , s) and λi = −1,

(i = s+ 1, . . . , n− 1). This completes the proof. 2

We call κ`(n
T )i(p, ξ), (i = 1, . . . , s) the lightcone principal curvatures of M with respect to

(nT , ξ) at p ∈M.
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4. Lightlike hypersurfaces in de Sitter space

We define a hypersurface LHM (nT ) : NdS
1 (M)[nT ]× R −→ Sn1 by

LHM ((p, ξ), µ) = X(u) + µ(nT + ξ)(u) = X(u) + µLG(nT )(u, ξ),

where p = X(u), which is called the de Sitter lightlike hypersurface along M relative to nT . We
introduce the notion of height functions on spacelike submanifold, which is useful for the study of
singularities of de Sitter lightlike hypersurfaces. We define a family of functionsH : M×Sn1 −→ R
on a spacelike submanifold M = X(U) by

H(p,λ) = H(u,λ) = 〈X(u),λ〉 − 1,

where p = X(u). We call H the de Sitter height function (briefly, dS-height function) on the
spacelike submanifold M. For any fixed λ0 ∈ Sn1 , we write hλ0

(p) = H(p,λ0) and have the
following proposition.

Proposition 4.1. Suppose that p0 = X(u0) 6= λ0. Then we have the following:
(1) hλ0(p0) = ∂hλ0/∂ui(p0) = 0, (i = 1, . . . , s) if and only if there exist ξ0 ∈ NdS

1 (M)p0 [nT ]
and µ0 ∈ R \ {0} such that

λ0 = X(u0) + µ0LG(nT )(u0, ξ0) = LHM (nT )((p0, ξ0), µ0).

(2) hλ0
(p0) = ∂hλ0

/∂ui(p0) = detH(hλ0
)(p0) = 0 (i = 1, . . . , s) if and only if there exist

ξ0 ∈ NdS
1 (M)p0 [nT ] and µ0 ∈ R \ {0} such that

λ0 = LHM (nT )((p0, ξ0), µ0)

and 1/µ is one of the non-zero lightcone principal curvatures κ`(n
T )i(p0, ξ0), (i = 1, . . . , s).

(3) With condition (2), rankH(hλ0
)(p0) = 0 if and only if p0 = X(u0) is a non-flat (nT (u0), ξ0)-

umbilical point.

Proof. (1) We write that p = X(u). The condition hλ0(p) = 〈X(u),λ0〉 − 1 = 0 means that

〈X(u)− λ0,X(u)− λ0〉 = 〈X(u),X(u)〉 − 2〈X(u),λ0〉+ 〈λ0,λ0〉
= −2(−1 + 〈X(u),λ0〉) = 0,

so that X(u) − λ0 ∈ LC∗. Since ∂hλ0
/∂ui(p) = 〈Xui

(u),λ0〉 and 〈Xui
,X〉 = 0, we have

〈Xui(u),λ0〉 = −〈Xui(u),X(u)− λ0〉. Therefore, ∂hλ0/∂ui(p) = 0 if and only if

X(u)− λ0 ∈ NpM.

On the other hand, the condition hλ0
(p) = 〈X(u),λ0〉 − 1 = 0 implies that

〈X(u),X(u)− λ0〉 = 0.

This means that X(u) − λ0 ∈ TpSn1 . Hence hλ0
(p0) = ∂hλ0

/∂ui((p0) = 0 (i = 1, . . . , s) if and
only if X(u0)− λ0 ∈ Np0M ∩ LC∗ ∩ Tp0Sn1 . Let

v = X(u0)− λ0 ∈ Np0M ∩ LC∗ ∩ Tp0Sn1 .

If 〈nT (u0),v〉 = 0, then nT (u0) belongs to a lightlike hyperplane in the Lorentz space Tp0S
n
1 ,

so that nT (u0) is lightlike or spacelike. This contradicts the fact that nT (u0) is a timelike unit
vector. Thus, 〈nT (u0),v〉 6= 0. We set

ξ0 =
−1

〈nT (u0),v〉
v − nT (u0).
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Then we have

〈ξ0, ξ0〉 = −2
−1

〈nT (u0),v〉
〈nT (u0),v〉 − 1 = 1

〈ξ0,nT (u0)〉 =
−1

〈nT (u0),v〉
〈nT (u0),v〉+ 1 = 0,

and 〈ξ0,X(u0)〉 = 0. This means that ξ0 ∈ NdS
1 (M)p0(M)[nT ].

Since −v = 〈nT (u0),v〉(nT (u0) + ξ0), we have λ0 = X(u0) + µ0LG(nT )(p0, ξ0), where
p0 = X(u0) and µ0 = 〈nT (u0),v〉. For the converse assertion, suppose that

λ0 = X(u0) + µ0LG(nT )(p0, ξ0).

Then λ0 −X(u0) ∈ Np0(M) ∩ LC∗ and

〈λ0 −X(u0),X(u0)〉 = 〈µ0LG(nT )(p0, ξ0),X(u0)〉 = 0.

Thus we have λ0−X(u0) ∈ Np0(M)∩LC∗∩Tp0Sn1 . By the previous arguments, these conditions
are equivalent to the condition that hλ0

(p0) = ∂hλ0
/∂ui((p0) = 0 (i = 1, . . . , s).

(2) By a straightforward calculation, we have

∂2hλ0

∂ui∂uj
(u) = 〈Xuiuj

,λ0〉.

Under the condition that λ0 = X(u0) + µ0(nT (u0) + ξ0), we have

∂2hλ0

∂ui∂uj
(u0) = 〈Xuiuj

(u0),X(u0)〉+ µ0〈Xuiuj
(u0), (nT (u0) + ξ0)〉.

Since 〈Xui
,X〉 = 0, we have 〈Xuiuj

,X〉 = −〈Xui
,Xuj

〉. Thus, we have(
∂2hλ0

∂ui∂u`
(u0)

)(
gj`(u0)

)
=
(
µ0h

j
i (n

T , ξ0)(p0)− δji
)
.

It follows that detH(g)(p0) = 0 if and only if 1/µ0 is an eigenvalue of (hij(n
T , ξ0)(p0)), which is

equal to one of the lightcone principal curvatures κ`(n
T )i(p0, ξ0), (i = 1, . . . , s).

(3) By the above calculation, rankH(hλ0)(p0) = 0 if and only if (hij(n
T )(p0, ξ0)) = 1

µ0
(δji ),

where 1/µ0 = κ`(n
T )i(p0, ξ0), (i = 1, . . . , s). This means that p0 = X(u0) is an (nT (u0), ξ0)-

umbilical point. 2

In order to understand the geometric meanings of the assertions of Proposition 4.1, we
briefly review the theory of Legendrian singularities For detailed expressions, see [1, 24]. Let
π : PT ∗(Rn+1) −→ Rn+1 be the projective cotangent bundle with its canonical contact struc-
ture. We next review the geometric properties of this bundle. Consider the tangent bundle
τ : TPT ∗(Rn+) → PT ∗(Rn+1) and the differential map dπ : TPT ∗(Rn+1) → TRn+1 of π. For
any X ∈ TPT ∗(Rn+1), there exists an element α ∈ T ∗(Rn+1

1 such that τ(X) = [α]. For an
element V ∈ Tx(Rn+1), the property α(V ) = 0 does not depend on the choice of representative
of the class [α]. Thus we can define the canonical contact structure on PT ∗(Rn+1) by

K = {X ∈ TPT ∗(Rn+1) | τ(X)(dπ(X)) = 0}.

We have the trivialization PT ∗(Rn+1) ∼= Rn+1 × Pn(R)∗, and call

((v0, v1, . . . , vn), [ξ0 : ξ1 : · · · : ξn])
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homogeneous coordinates of PT ∗(Rn+1), where [ξ0 : ξ1 : · · · : ξn] are the homogeneous coordinates
of the dual projective space Pn(R)∗. It is easy to show that X ∈ K(x,[ξ]) if and only if

n∑
i=0

µiξi = 0,

where dπ̃(X) =
∑n
i=0 µi∂/∂vi. An immersion i : L → PT ∗(Rn+1) is said to be a Legendrian

immersion if dimL = n and diq(TqL) ⊂ Ki(q) for any q ∈ L. The map π ◦ i is also called the
Legendrian map of i and the set W (i) = imageπ ◦ i, the wave front set of i. Moreover, i (or, the
image of i) is called the Legendrian lift of W (i).

Let F : (Rk × Rn+1,0) −→ (R,0) be a function germ. We say that F is a Morse family of
hypersurfaces if the map germ

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn+1,0) −→ (R× Rk,0)

is submersive, where (q, x) = (q1, . . . , qk, x0, . . . , xn) ∈ (Rk × Rn+1,0). In this case we have a
smooth n-dimensional submanifold

Σ∗(F ) =
{

(q, x) ∈ (Rk × Rn+1,0)
∣∣∣ F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
and the map germ LF : (Σ∗(F ),0) −→ PT ∗Rn+1 defined by

LF (q, x) =

(
x,

[
∂F

∂x0
(q, x) : · · · : ∂F

∂xn
(q, x)

])
is a Legendrian immersion. We call F a generating family of LF (Σ∗(F )), and the wave front set
is given by W (LF )= πn(Σ∗(F )), where πn : Rk ×Rn −→ Rn is the canonical projection. In the
theory of unfoldings of function germs, the wave front set W (LF ) is called a discriminant set of
F, which is also denoted by DF .

By the assertion (2) of Proposition 4.1, a singular point of the de Sitter lightlike hypersurface is
a point λ0 = X(u0) +µ0(nT +ξ0)(u0) for p0 = X(u0) and µ0 = 1/κ`(n

T )i(p0, ξ0), i = 1, . . . .s).
Then we have the following corollary.

Corollary 4.2. The critical value of LHM (nT ) is the point

λ = X(u) +
1

κ`(nT )i(p, ξ)
LG(nT )(u, ξ),

where p = X(u) and κ`(n
T )i(p, ξ) 6= 0.

For a non-zero lightcone principal curvature κ`(n
T )i(p0, ξ0) 6= 0, we have an open subset

Oi ⊂ NdS
1 (M)[nT ] such that κ`(n

T )i(p, ξ) 6= 0. Therefore, we have a non-zero lightcone principal
curvature function κ`(n

T )i : Oi −→ R. We define a mapping LFκ`(nT )i : Oi −→ AdSn+1 by

LFκ`(nT )i(p, ξ) = X(u) +
1

κ`(nT )i(p, ξ)
NG(nT )(u, ξ),

where p = X(u). We also define

LFM (nT ) =

s⋃
i=1

{
LFκ`(nT )i(p, ξ) | (p, ξ) ∈ NdS

1 (M)[nT ] s.t. κ`(n
T )i(p, ξ) 6= 0

}
.

We call LFM (nT ) the de Sitter lightlike focal set of M = X(U) relative to nT , which is the
critical value set of the de Sitter lightlike hypersurface LHM (nT )(NdS

1 (M)[nT ] × R) along M
relative to nT .
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By Proposition 4.1, the image of the lightlike hypersurface along M relative to nT is the
discriminant set of the AdS-height function H on M . Moreover, the focal set is the critical value
set of the lightlike hypersurface along M relative to nT . Since H is independent of the choice of
nT , we have shown the following corollary.

Corollary 4.3. Let nT and nT be future directed timelike unit normal fields along M . Then
we have

LHM (nT )(N1(M)[nT ]× R) = LHM (nT )(N1(M)[nT ]× R) and LFM (nT ) = LFM (nT ).

We have the following proposition.

Proposition 4.4. For any point (u,λ) ∈ Σ∗(F ) = ∆∗H−1(0), the germ of the dS-height function
H at (u,λ) is a Morse family of hypersurfaces.

Proof. We write

X(u) = (X0(u), X1(u), . . . , Xn(u)) and λ = (λ0, λ1, . . . , λn).

We define an open subset U+
n = {λ ∈ Sn1 | λn > 0 }. For any λ ∈ U+

n , we have

λn =

√√√√λ20 −
n−1∑
i=1

λ2i + 1.

Thus, we have local coordinates on Sn1 given by (λ0, λ1, . . . , λn−1) on U+
n . By definition, we have

H(u,λ) = −X0(u)λ0 +X1(u)λ1 + · · ·+Xn−1(u)λn−1 +Xn(u)

√√√√λ20 −
n−1∑
i=1

λ2i + 1− 1.

We now prove that the mapping

∆∗H =

(
H,

∂H

∂u1
, . . . ,

∂H

∂us

)
is non-singular at (u,λ) ∈ Σ∗(F ). Indeed, the Jacobian matrix of ∆∗H is given by

Xn
λ0
λn
−X0 −Xn

λ1

λn
+X1 · · · −Xn

λn−1
λn

+Xn−1

A Xnu1

λ0
λn
−X0u1 −Xnu1

λ1
λn

+X1u1 · · · −Xnu1

λn−1
λn

+Xn−1u1

...
...

. . .
...

Xnus

λ0
λn
−X0us

−Xnus

λ1
λn

+X1us
· · · −Xnus

λn−1
λn

+Xn−1us


,

where

A =


〈Xu1

,λ〉 · · · 〈Xus
,λ〉

〈Xu1u1
,λ〉 · · · 〈Xu1us

,λ〉
...

. . .
...

〈Xusu1
,λ〉 · · · 〈Xusus

,λ〉

 .
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We now show that the rank of

B =



Xn
λ0
λn
−X0 −Xn

λ1
λn

+X1 · · · −Xn
λn−1
λn

+Xn−1

Xnu1

λ0
λn
−X0u1

−Xnu1

λ1
λn

+X1u1
· · · −Xnu1

λn−1
λn

+Xn−1u1

...
...

. . .
...

Xnus

λ0
λn
−X0us

−Xnus

λ1
λn

+X1us
· · · −Xnus

λn−1
λn

+Xn−1us


is s+ 1 at (u,λ) ∈ Σ∗(H). Since (u,λ) ∈ Σ∗(H), we have

λ = X(u) + µ

(
nT (u) +

k−1∑
i=1

ξini(u)

)
with

∑k−1
i=1 ξ

2
i = 1, where {X,nT ,nS1 , . . . ,n

S
k−1} is a pseudo-orthonormal (local) frame of N(M).

Without loss of generality, we assume that µ 6= 0 and ξk−1 6= 0. We write

nT (u) =t(nT0 (u), . . . nTn (u)), nSi (u) =t(ni0(u), . . . nin(u)).

It is enough to show that the rank of the matrix

C =



Xn
λ0
λn
−X0 −Xn

λ1

λn
+X1 · · · −Xn

λn−1
λn

+Xn−1

Xnu1

λ0
λn
−X0u1

−Xnu1

λ1
λn

+X1u1
· · · −Xnu1

λn−1
λn

+Xn−1u1

...
...

. . .
...

Xnus

λ0
λn
−X0us −Xnus

λ1
λn

+X1us · · · −Xnus

λn−1
λn

+Xn−1us

nTn
λ0
λn
− nT0 −nTn

λ1
λn

+ nT1 · · · −nTn
λn−1
λn

+ nTn−1

n1n
λ0
λn
− n10 −n1n

λ1
λn

+ n11 · · · −n1n
λn−1
λn

+ n1n−1

...
...

. . .
...

nk−2n

λ0
λn
− nk−20 −nk−2n

λ1
λn

+ nk−21 · · · −nk−2−1
λn−1
λn

+ nk−2n−1


is n at (u,λ) ∈ Σ∗(H). We write

ai =t(xi(u), xiu1
(u), . . . xius

(u), nTi (u), n1i (u), . . . , nk−2i (u)).

Then we have

C =

(
an

λ0
λn
− a0,−an

λ1
λn

+ a1, . . . ,−an
λn−1
λn

+ an−1

)
.

It follows that

det C =
λ0
λn

(−1)n−1 det(a1, . . . ,an) +
λ1
λn

(−1)n−2 det(a0,a2, . . . ,an)

+ · · ·+ (−1)0
λn−1
λn

det(a0,a1, . . . ,an−2,an) + (−1)1
λn
λn

det(a0,a1, . . . ,an−1).

Moreover, we define δi = det(a0,a1, . . . ,ai−1,ai+1, . . . ,an) for i = 0, 1, . . . , n and

a = (−(−1)n−1δ0, (−1)n−2δ1, . . . , (−1)0δn−1, (−1)1δn).

Then we have

a = (−1)n−1X ∧Xu1 ∧ · · · ∧Xus ∧ nT ∧ n1 ∧ · · · ∧ nk−2.
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We remark that a 6= 0 and a = ±‖a‖nk−1. By the above calculation, we have

det C =

〈(
λ0
λn
,
λ1
λn
, . . . ,

λn
λn

)
,a

〉
=

1

λn

〈
X(u) + µ

(
nT (u) +

k−1∑
i=1

ξini(u)

)
,a

〉

=
1

λn
×±µξk−1‖a‖ = ±µξk−1‖a‖

λn
6= 0.

Therefore the Jacobi matrix of ∆∗H is non-singular at (u,λ) ∈ Σ∗(F ).
For other local coordinates of Sn1 , we can apply the same method for the proof as the above

case. This completes the proof. 2

Here we consider the open set U+
n again. Since H is a Morse family of hypersurfaces, we have

a Legendrian immersion

LH : Σ∗(H) −→ PT ∗(Sn1 )|U+
n

by the general theory of Legendrian singularities. By definition, we have

∂H

∂λ0
(u,λ) = Xn(u)

λ0
λn
−X0(u),

∂H

∂λi
(u,λ) = −Xn(u)

λi
λn

+Xi(u), (i = 1, . . . , n− 1).

It follows that[
∂H

∂λ0
(u,λ) :

∂H

∂λ1
(u,λ) : · · · : ∂H

∂λn−1
(u,λ)

]
= [Xn(u)λ0 −X0(u)λn : X1(u)λn −Xn(u)λ1 : · · · : Xn−1(u)λn −Xn(u)λn−1].

Therefore, we have

LH(u,λ) = (λ, [Xn(u)λ0 −X0(u)λn : X1(u)λn −Xn(u)λ1 : · · · : Xn−1(u)λn −Xn(u)λn−1]),

where

Σ∗(H) = {(u,λ) | λ = LHM (nT )(p, ξ, t) ((p, ξ), t) ∈ N1(M)[nT ]× R}.
We observe that H is a generating family of the Legendrian immersion LH whose wave front is
LHM (nT )(N1(M)[nT ] × R). For other local coordinates of Sn1 , we have the similar results to
the above case.

5. Contact with de Sitter lightcones

In this section, we consider the geometric meaning of the singularities of lightlike hypersurfaces
in de Sitter space from the viewpoint of the theory of contact of submanifolds with model hyper-
surfaces in the view of Montaldi’s theory. We review the theory of contact for submanifolds in
[21]. Let Xi and Yi, i = 1, 2, be submanifolds of Rn with dimX1 = dimX2 and dimY1 = dimY2.
We say that the contact of X1 and Y1 at y1 is the same type as the contact of X2 and Y2 at y2 if
there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2.
In this case we write K(X1, Y1; y1) = K(X2, Y2; y2). Since this definition of contact is local, we
can replace Rn by an arbitrary n-manifold. Montaldi gives in [21] the following characteriza-
tion of contact by using K-equivalence. We say that two function germs hi : (Rs,0) −→ (R, 0)
(i = 1, 2) are K-equivalent if there exist a diffeomorphism germ ψ : (Rs,0) −→ (Rs,0) and a
function germ λ : (Rs,0) −→ R with λ(0) 6= 0 such that λ(x)h1 ◦ ψ(x) = h2(x) for x ∈ (Rs,0).

Theorem 5.1. Let Xi and Yi, i = 1, 2, be submanifolds of Rn for which dimX1 = dimX2

and dimY1 = dimY2 = n − 1. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and let
fi : (Rn, yi) −→ (Rp, 0) be submersion germs with (Yi, yi) = (f−1i (0), yi).

Then K(X1, Y1; y1) = K(X2, Y2; y2) if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.
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We remark that the assertion of the above theorem holds for submanifolds Yi with general
codimension (cf., [21]).

Now, we return to the review of the theory of Legendrian singularities. We introduce a natural
equivalence relation among Legendrian submanifold germs. Let

F,G : (Rk × Rn,0) −→ (R, 0)

be Morse families of hypersurfaces. Then we say that LF (Σ∗(F )) and LG(Σ∗(G)) are Legen-
drian equivalent if there exists a contact diffeomorphism germ H : (PT ∗Rn, z) −→ (PT ∗Rn, z′)
such that H preserves fibers of π and that H(LF (Σ∗(F ))) = LG(Σ∗(G)), where z = LF (0),
z′ = LG(0). By using Legendrian equivalence, we can define the notion of Legendrian stability
for Legendrian submanifold germs in the ordinary way (see, [1, Part III]). We can interpret Leg-
endrian equivalence by using the notion of generating families. We denote by Ek the local ring of
function germs (Rk,0) −→ R with the unique maximal ideal Mk = {h ∈ Ek | h(0) = 0 }.
Let F,G : (Rk × Rn,0) −→ (R, 0) be function germs. We say that F and G are P -K-
equivalent if there exists a diffeomorphism germ Ψ : (Rk × Rn,0) −→ (Rk × Rn,0) of the
form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
.

Here Ψ∗ : Ek+n −→ Ek+n is the pull-back R-algebra isomorphism defined by Ψ∗(h) = h ◦Ψ. We
say that F is an infinitesimally K-versal deformation of f = F |Rk × {0} if

Ek = Te(K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R
,

where Te(K)(f) =
〈
∂f
∂q1

, . . . , ∂f∂qk , f
〉
Ek
, (see [19].) The main result in the theory of Legendrian

singularities ([1], §20.8 and [24], THEOREM 2) is the following:

Theorem 5.2. Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces. Then we
have the following assertions:
(1) LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if and only if F and G are P -K-
equivalent,
(2) LF (Σ∗(F )) is Legendrian stable if and only if F is an infinitesimally K-versal deformation
of f = F |Rk × {0}.

Since F and G are function germs on the common space germ (Rk × Rn,0), we do not need
the notion of stably P -K-equivalence under this situation [24, page 27]. For any map germ
f : (Rk,0) −→ (Rp,0), we define the local ring of f by Qr(f) = Ek/(f∗(Mp)Ek + Mr+1

k ). We
have the following classification result of Legendrian stable germs (cf. [10, Proposition A.4])
which is the key for the purpose in this section.

Proposition 5.3. Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces and
f = F |Rk × {0}, g = G|Rk × {0}. Suppose that LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian
stable. The the following conditions are equivalent:

(1) (W (LF ),0) and (W (LG),0) are diffeomorphic as set germs,
(2) (LF (Σ∗(F )), z) and (LG(Σ∗(G)), z′) are Legendrian equivalent,
(3) Qn+1(f) and Qn+1(g) are isomorphic as R-algebras.

We have the following basic observations.

Proposition 5.4. Let M = X(U) be a spacelike submanifold with

κ`(n
T )i(p, ξ) 6= 0 for i = 1, . . . s.

We consider λ0 ∈ Sn1 . Then M ⊂ LCλ0 ∩Sn1 if and only if λ0 = LFM (nT ). In this case we have
LHM (nT )(N1(M)[nT ]) ⊂ LCλ0 ∩ Sn1 and M = X(U) is totally lightcone umbilical.
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Proof. By Proposition 3.1, κ`(n
T )i(p, ξ) 6= 0 for i = 1, . . . s if and only if

{(nT + nS), (nT + nS)u1
, . . . , (nT + nS)us

}
is linearly independent for p0 = X(u0) ∈ M and ξ0 = nS(u0), where nS : U −→ NdS

1 (M)[nT ]
is a local section. By the proof of assertion (1) of Proposition 4.1, M ⊂ LCλ0

∩ Sn1 if and only
if hλ0(u) = 0 for any u ∈ U, where hλ0(u) = H(u,λ0) is the dS-height function on M. It also
follows from Proposition 4.1 that there exists a smooth function η : U ×NdS

1 (M)[nT ] −→ R and
section nS : U −→ NdS

1 (M)[nT ] such that

X(u) = λ0 + η(u,nS(u))(nT (u)± nS(u)).

In fact, we have η(u,nS(u)) = −1/κ`(n
T )i(p, ξ) i = 1, . . . , s, where p = X(u) and ξ = nS(u).

It follows that κ`(n
T )i(p, ξ) = κ`(n

T )j(p, ξ), so that M = X(U) is totally lightcone umbilical.
Therefore we have

LHM (nT )(u,nS(u), µ) = λ0 + (µ+ η(u,nS(u))(nT (u)± nS(u)).

Hence we have LHM (nT )(N1(M)[nT ] × R) ⊂ LCλ0 . By Corollary 4.2, the critical value set of
LHM (nT )(N1(M)[nT ]×R) is the de Sitter lightlike focal set LFM (nT ). However, it is equal to
λ0 by the previous arguments.

For the converse assertion, suppose that λ0 = LFM (nT ). Then we have

λ0 = X(u) +
1

κ`(nT )i(X(u), ξ)
LG(nT )(u, ξ),

for any i = 1, . . . , s and (p, ξ) ∈ NdS
1 (M)[nT ], where p = X(u). Thus, we have

κ`(n
T )i(X(u), ξ) = κ`(n

T )j(X(u), ξ)

for any i, j = 1, . . . , s, so that M is totally lightcone umbilical. Since LG(nT )(u, ξ) is null, we
have X(u) ∈ LCλ0 . This completes the proof. 2

According to the above proposition, LCλ0 ∩ Sn1 is regarded as a model lightlike hypersurface
in Sn1 . We define

T (Sn1 )λ0
= {x ∈ Rn+1

1 | x− λ0 ∈ Tλ0
Sn1 },

where Tλ0
Sn1 is the tangent space of Sn1 at λ0 ∈ Sn1 . We call T (Sn1 )λ0

a tangent affine space of
Sn1 at λ0 ∈ Sn1 . It is easy to show that

LCλ0
∩ Sn1 = T (Sn1 )λ0

∩ Sn1 .
We write LCλ0(Sn1 ) = LCλ0 ∩Sn1 = T (Sn1 )λ0

∩Sn1 , which is called a dS-lightcone with the vertex
λ0 ∈ Sn1 . Therefore, the model lightlike hypersurface is a dS-lightcone.

We consider the contact of spacelike submanifolds with dS-lightcones. Let

H : Sn1 × Sn1 −→ R
be a function defined by H(x,λ) = 〈x,λ〉 − 1. Given λ0 ∈ Sn1 , we write hλ0

(x) = H(x,λ0), so
that we have h−1λ0

(0) = LCλ0
(Sn1 ). For any p0 = X(u0) ∈ M , µ0 ∈ R and ξ0 ∈ NdS

1 (M)p[n
T ],

we consider the point λ0 = X(u0) + µ0(nT (u0) + ξ0). Then we have

hλ0
◦X(u0)) = H ◦ (X × 1AdSn+1)(u0,λ0) = H(p0,λ0) = 0,

where µ0 = 1/κ`(n
T )i(p0, ξ0), i = 1, . . . , s. We also have relations

∂hλ0 ◦X
∂ui

(u0) =
∂H

∂ui
(p0,λ0) = 0, i = 1, . . . , s.

These imply that the dS-lightcone h−1λ0
(0) = LCλ0(Sn1 ) is tangent to M = X(U) at p0 = X(u0).

In this case, we call LCλ0(Sn1 ) a tangent dS-lightcone of M = X(U) at p0 = X(u0), which
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is denoted by TLCλ0
(M)p0 . Moreover, the tangent dS-lightcone TLCλ0

(M)p0 is called an os-
culating dS-lightcone if λ0 = LFκ`(nT )i(p0,ξ0)

(u0) ∈ LFM , for one lightcone principal curva-

ture κ`(n
T )i(p0, ξ0). In this case, we call λ0 the center of the lightcone principal curvature

κ`(n
T )i(p0, ξ0). Therefore, we can interpret the lightlike focal set as the locus of the centers

of the lightcone principal curvatures. This fact is analogous to the notion of the focal sets of
submanifolds in Euclidean space.

We now describe the contacts of spacelike submanifolds in Sn1 with dS-lightcones. We denote

by Q(X, u0) the local ring of the function germ h̃λ0 : (U, u0) −→ R, where λ0 = LCM (u0, ξ0, µ0).
We remark that we can explicitly write the local ring as follows:

Qn+1(X, u0) =
C∞u0

(U)

〈〈X(u),λ0〉 − 1〉C∞
u0

(U) + Mu0
(U)n+2 ,

where C∞u0
(U) is the local ring of function germs at u0.

Let LHMi(n
T
i ) : (N1(Mi)[n

T
i ]× R, (pi, ξi, µi)) −→ (Sn1 ,λi), (i = 1, 2) be two lightlike hyper-

surface germs of spacelike submanifold germs Xi : (U, ui) −→ (Sn1 , pi). Let

Hi : (U × Sn1 , (ui,λi)) −→ R

be the dS-height function germ of Xi. Then we have the following theorem:

Theorem 5.5. Let Xi : (U, ui) −→ (Sn1 , pi), i = 1, 2, be spacelike submanifold germs such that
the corresponding Legendrian submanifold germs LHi(Σ∗(Hi)) are Legendrian stable. We write
Xi(U) = Mi. Then the following conditions are equivalent:

(1) (LHM1
(N1(M1)[nT1 ]× R),λ1) and (LHM2

(N1(M2)[nT2 ]× R),λ2) are diffeomorphic,
(2) (LH1

(Σ∗(H1)), z1) and (LH2
(Σ∗(H2)), z2) are Legendrian equivalent,

(3) H1 and H2 are P -K-equivalent,
(4) h1,λ1 and h2,λ2 are K-equivalent,
(5) K(M1, TLCλ1

(M1)p1 , p1) = K(M2, TLCλ2
(M2)p2 , p2).

(6) Qn+1(X1, u
1) and Qn+1(X2, u

2) are isomorphic as R-algebras.

Proof. By Proposition 5.3, conditions (1), (2) and (6) are equivalent. These conditions are
also equivalent to the condition that two generating families H1 and H2 are P -K-equivalent by
Theorem 5.2. If we denote hi,λi

(u) = Hi(u,λi), then we have hi,λi
(u) = hλi

◦Xi(u). By Theorem

5.1, K(X1(U), LCλ1
, p1) = K(x2(U), LCλ2, p2) if and only if h̃1,λ1

and h̃2,λ2
are K-equivalent.

This means that (4) and (5) are equivalent. By definition, (3) implies (4). The uniqueness of
the infinitesimally K-versal deformation of hi,λi (cf., [19]) leads that the condition (4) implies
(3). This completes the proof. 2

6. Spacelike submanifolds with codimension two

In [4], we previously investigated the singularities of lightlike surfaces along spacelike curves
in S3

1 . As a consequence, we discovered a new invariant for spacelike curves which estimates
the order of contact with de Sitter lightcones in S3

1 . After that, Kaseou [17] investigated the
singularities of de Sitter lightlike hypersurfaces of spacelike submanifolds of codimension two
in Sn1 . We remark that NdS(M)[nT ] is a double covering of M for codimension two spacelike
submanifold M in Sn1 . Then the de Sitter lightlike hypersurface is the image of the mapping
LH±M (u, µ) = X(u)+µ(nT ±nS)(u), which coincides with the lightlike hypersurface along M in
[17]. Therefore, all results in the previous sections for de Sitter space are generalizations of the
results in [17]. We now consider spacelike surfaces in S4

1 here. Let X : U −→ S4
1 be a spacelike

embedding from an open subset U ⊂ R2. In [17], it was shown that there is the following generic



LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS 171

classification theorem. We say that two map germs f, g : (Rn, 0) −→ (Rp, 0) are A-equivalent
if there exists diffeomorphism germs φ : (Rn, 0) −→ (Rn, 0) and ψ : (Rp, 0) −→ (Rp, 0) such
that f ◦ φ = ψ ◦ g. Let Embsp (U, S4

1) be a space of spacelike embeddings from U to S4
1 with the

Whitney C∞-topology.

Theorem 6.1 ([17]). There exists an open dense subset O ⊂ Embsp (U, S4
1) such that for any

X ∈ O, the germ of the corresponding lightlike hypersurfaces LH±M at any point (u0, µ0) ∈ U×R
is A-equivalent to one of the map germs Ak (1 ≤ k ≤ 4) or D±4 : where, Ak, D

±
4 -map germs

f : (R3, 0) −→ (R4, 0) are given by
A1; f(u1, u2, u3) = (u1, u2, u3, 0),
A2; f(u1, u2, u3) = (3u21, 2u

3
1, u2, u3),

A3; f(u1, u2, u3) = (4u31 + 2u1u2, 3u
4
1 + u2u

2
1, u2, u3),

A4; f(u1, u2, u3) = (5u41 + 3u2u
2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u2, u3),

D+
4 ; f(u1, u2, u3) = (2(u31 + u32) + u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3),

D−4 ; f(u1, u2, u3) =

((
u31
3
− u1u22

)
+ (u21 + u22)u3, u

2
2 − u21 − 2u1u3, 2(u1u2 − u2u3), u3

)
.

As a corollary of the above theorem, we have the following generic local classification of AdS-
lightlike focal sets along spacelike surfaces. We define C(2, 3, 4) = {(u21, u31, u41) | u1 ∈ R}, which
is called a (2, 3, 4)-cusp. We also define

C(BF ) = {(10u31 + 3u2u1, 5u
4
1 + u2u

2
1, 6u

5
1 + u2u

3
1, u2) | (u1, u2) ∈ R2}.

We call C(BF ) a C-butterfly (i.e., the critical value set of the butterfly). Finally we define
C(2, 3, 4, 5) = {(u21, u31, u41, u51) | u1 ∈ R}, which is called a (2, 3, 4, 5)-cusp.

Corollary 6.2. There exists an open dense subset O ⊂ Embsp (U, S4
1) such that for any X ∈ O,

the germ of the corresponding dS-lightlike focal set LF±M at any point (u0, µ0) ∈ U ×R is diffeo-
morphic to one of the following set germs at the origin in R4:
A2; {(0, 0)} × R2,
A3; C(2, 3, 4)× R,
A4; C(BF ),
D+

4 ; {(2(u31 + u32) + u1u2u3, 3u
2
1 + u2u3, 3u

2
2 + u1u3, u3) | u23 = 36u1u2},

D−4 ;

{((
u31
3
− u1u22

)
+ (u21 + u22)u3, u

2
2 − u21 − 2u1u3, 2(u1u2 − u2u3), u3

) ∣∣∣ u23 = u21 + u22

}
.

Proof. For A3, we can calculate the Jacobi matrix of the normal form f in Theorem 5.9:

Jf =


12u21 + 2u1 2u1 0

12u31 + 2u1u2 u21 0
0 1 0
0 0 1

 ,

so that rankJf < 3 if and only if 6u21 + u2 = 0. Thus, the critical value set of f is

C(f) = {(−8u31,−3u41,−6u21, u3) | (u1, u3) ∈ R2}.

It is C(2, 3, 4) × R. By a similar calculation, we can show that the germ of A4 is diffeomorphic
to C(BF ). For D+

4 , we can calculate the Jacobi matrix o the normal form f :

Jf =


6u21 + u2u3 6u22 + u1u3, u1u2 0

6u1 u3 u2
u3 6u2 u1
0 0 1

 .
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Therefore, rank Jf < 3 if and only if∣∣∣∣ 6u21 + u2u3 6u22 + u1u3, u1u2
6u1 u3

∣∣∣∣ =

∣∣∣∣ 6u21 + u2u3 6u22 + u1u3, u1u2
u3 6u2

∣∣∣∣ =

∣∣∣∣ 6u1 u3
u3 6u2

∣∣∣∣ = 0,

which is equivalent to the condition that u23 = 36u1u2. For D−4 , by a calculation similar to the
above, we have the condition that u23 = u21 + u22. This completes the proof. 2

By using the above normal forms, we can investigate the detailed geometric properties of
spacelike surface in S4

1 corresponding to the singularities of dS-lightlike focal sets . However, we
have limited space, so that we omit these discussions here.

References

[1] V. I. Arnol’d, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps vol.
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