Topological classification of circle-valued simple Morse-Bott functions
E.B. Batista, J.C.F. Costa, and I.S. Meza-Sarmiento
Journal of Singularities
volume 17 (2018), 388-402
Received: 20 April 2018. Received in revised form: 16 July 2018.
Add a reference to this article to your citeulike library.
Abstract:
In this work, we investigate the classification of Morse-Bott functions from S^2 to S^1, up to topological conjugacy. We give a complete topological invariant of simple Morse-Bott functions f:S^2 \to S^1. The invariant is based on the generalized Reeb graph associated to f (called here MB-Reeb graph). Moreover, a realization theorem is obtained.
Keywords:
Topological invariant, Morse--Bott functions, Reeb graph, topological equivalence, realization theorem
2010 Mathematical Subject Classification:
58K15, 58K65, 58E05, 57R70
Author(s) information:
E.B. Batista | J.C.F. Costa | I.S. Meza-Sarmiento |
Centro de Ciências e Tecnologia | Departamento de Matemática - UNESP | Departamento de Matemática - UNESP |
Universidade Federal do Cariri | Câmpus de São José do Rio Preto-SP | Câmpus de São José do Rio Preto-SP |
CEP 63048-080, Juazeiro do Norte, Ceará | 15054-000, S.J. Rio Preto, São Paulo | 15054-000, S.J. Rio Preto, São Paulo |
Brazil | Brazil | Brazil |
email: erica.batista@ufca.edu.br | email: joao.costa@unesp.br | email: isofia1015@gmail.com |