Topological classification of circle-valued simple Morse-Bott functions

E.B. Batista, J.C.F. Costa, and I.S. Meza-Sarmiento

Journal of Singularities
volume 17 (2018), 388-402

Received: 20 April 2018. Received in revised form: 16 July 2018.

DOI: 10.5427/jsing.2018.17q

Add a reference to this article to your citeulike library.


Abstract:

In this work, we investigate the classification of Morse-Bott functions from S^2 to S^1, up to topological conjugacy. We give a complete topological invariant of simple Morse-Bott functions f:S^2 \to S^1. The invariant is based on the generalized Reeb graph associated to f (called here MB-Reeb graph). Moreover, a realization theorem is obtained.


Keywords:

Topological invariant, Morse--Bott functions, Reeb graph, topological equivalence, realization theorem


2010 Mathematical Subject Classification:

58K15, 58K65, 58E05, 57R70


Author(s) information:

E.B. Batista J.C.F. Costa I.S. Meza-Sarmiento
Centro de Ciências e Tecnologia Departamento de Matemática - UNESP Departamento de Matemática - UNESP
Universidade Federal do Cariri Câmpus de São José do Rio Preto-SP Câmpus de São José do Rio Preto-SP
CEP 63048-080, Juazeiro do Norte, Ceará 15054-000, S.J. Rio Preto, São Paulo 15054-000, S.J. Rio Preto, São Paulo
Brazil Brazil Brazil
email: erica.batista@ufca.edu.br email: joao.costa@unesp.br email: isofia1015@gmail.com