
Journal of Singularities
Volume 2 (2010), 19-50

Proc. of Singularities in Aarhus
received 23 November 2009
DOI: 10.5427/jsing.2010.2b

A0-SUFFICIENCY OF JETS FROM R2 TO R2

HANS BRODERSEN AND OLAV SKUTLABERG

Dedicated to professor Andrew du Plessis on his 60th birthday

Abstract. An r-jet z ∈ Jr(2, 2) is A0-sufficient in E[r](2, 2) if every Cr realization of z

is topologically right-left equivalent to z. We give sufficient conditions for A0-sufficiency

in E[r](2, 2). For a certain class of jets, we prove that our sufficient conditions are also
necessary. Finally, we use the techniques developed in the course of the proofs of these

results to give sufficient conditions for a 1-parameter family of Cr plane-to-plane map-germs

to be topologically trivial.

1. Introduction

Let E[r](n, p) denote the set of Cr-map-germs (Rn, 0)→ (Rp, 0). Let ω : (Rn, 0)→ (Rp, 0) be
an r-jet. We say that ω is A0-sufficient in E[r](n, p) if, for any Cr-germ f : (Rn, 0)→ (Rp, 0) with
jrf(0) = ω, there exist germs of homeomorphisms h : (Rn, 0)→ (Rn, 0) and k : (Rp, 0)→ (Rp, 0)
such that f = k ◦ ω ◦ h.

The study of sufficiency of jets started with the classical papers of Kuiper [7], Kuo [8], [9] and
Bochnak and  Lojasiewicz [3]. In these papers the sufficiency of r-jets in E[r](n, 1) = E[r] and
E[r+1] with respect to R0-equivalence and the sufficiency of r-jets in E[r+1](n, p) with respect to
V-equivalence were studied, and necessary and sufficient conditions for sufficiency were given.
(Two map-germs f , g are R0-equivalent if there exists a germ of homeomorphism h such that
f = g ◦ h, and they are V-equivalent if f−1(0) and g−1(0) are homeomorphic.) In these cases
the necessary and sufficient condition was formulated in terms of a  Lojasiewicz inequality. This
 Lojasiewicz inequality implies that every representative of the jet is, in some sense, non-singular
outside 0.

In this article we will study A0-sufficiency of jets, and we will only consider jets from R2 to R2.
The nice geometric conditions we expect for representatives of such jets are that they only have
fold singularities outside the origin and that they do not have singular double points. We must
therefore put up  Lojasiewicz inequalities avoiding such singularities outside 0, and hopefully such
 Lojasiewicz inequalities will be necessary and sufficient conditions for A0-sufficiency of plane-to-
plane jets. We have however not been able to prove this in general. Let ω : (R2, 0) → (R2, 0)
be a singular r-jet (identified with a polynomial map of degree ≤ r) with singular set Σ(ω).
Assume that ω is not the zero jet and that 0 is not isolated in Σ(ω). Then Σ(ω) is a 1-
dimensional algebraic set. It follows that for small balls B(0, ρ) around 0, 0 is in the closure of
all components of (Σ(ω) − {0}) ∩ B(0, ρ) and the number of such components are independent
of the radius ρ. Let C1, . . . , CN be these components. By the curve selection lemma, we can
find analytic curves γi : [0, ε) → R2 for i = 1, . . . , N with γi(0) = 0 and γi(0, ε) ⊂ Ci. Let
ni = lim

t→0+
γ′i(t)/ ‖γ′i(t)‖. If all the ni are distinct, we say that C1, . . . , CN have different tangent

directions at 0. Assume that C1, . . . , CN have different tangent directions at 0. For such jets, we
prove that there exist two  Lojasiewicz inequalities which together are necessary and sufficient
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conditions for sufficiency. This result is Theorem 2.2 in Section 2. If we drop the hypothesis
about the tangent directions, we can prove that our inequalities are sufficient conditions, but we
have not suceeded in proving the necessity of both of these inequalities in the general case. For
jets ω such that two components Ci and Cj of Σ(ω) − {0} have the same tangent direction at
0, the distance between points in Ci and Cj may be small compared to the distance to 0. This
makes perturbation arguments complicated.

If we consider jets ω where 0 is isolated in Σ(ω), we can discard the second  Lojasiewicz
inequality, and the first  Lojasiewicz inequality will be a necessary and sufficient condition for
A0-sufficiency. In fact, it turns out that this inequality is a necessary and sufficient condition
for R0-sufficiency in E[r](2, 2) for such jets.

The statement of Theorem 2.2 in Section 2 below is a generalized and improved version of
a theorem announced without proof in the article [5]. Also Theorem 2.3 is announced without
proof in [5].

The article is organized in the following way: In Section 2 we introduce some notation and
formulate the main results of the article. In Section 3 we write down the equations in the jet
space for certain sets of singular 1- and 2-jets, and we find expressions for distance functions
from jets to these singular sets. These distance functions will be used throughout the article.
We also discuss the smoothness of one of these distance functions and we prove Propostion
2.1 and Theorem 2.3 of Section 2. In Section 4 we prove that the two  Lojasiewicz inequalities
formulated in Theorem 2.2 in Section 2 are stable in the sense that all Cr-representatives of
a jet satisfying the inequalities also satisfy similar inequalities. We also derive a number of
geometrical consequences of our  Lojasiewicz inequalities.

In Section 5, we prove that the two  Lojasiewicz inequalities of Theorem 2.2 imply sufficiency
of the jet. In Section 6, we point out that every jet has a nice realization which has at most
only fold singularities outside 0, and avoids singular double points. We then prove that if some
of the inequalities of Theorem 2.2 are not satisfied, then we can find another bad realization
of the jet having singularities which are topologically different from the singularities of the nice
representative. (When we here consider the failure of the second  Lojasiewicz inequality, we
consider only jets ω such that the tangent directions at 0 of the components C1, . . . , CN are
distinct.) This will prove that the  Lojasiewicz inequalities are necessary for sufficiency of the jet
and therefore complete the proof of Theorem 2.2.

In Section 7 we give examples of sufficient and non-sufficient jets.
Finally, in Section 8, we look at germs of one-parameter families of Cr-maps and state sufficient

conditions for such families to be topologically trivial. The conditions are analogous to those
satisfied by one-parameter families of Cr-realizations of sufficient jets.

2. The Main Theorem

Let J1(2, 2) be the set of 1-jets (R2, 0) → (R2, 0). An element z ∈ J1(2, 2) can be identified

with a linear map from R2 to R2 and thus with a matrix

(
a b
c d

)
or (when we find it convenient) a

vector (a, b, c, d) ∈ R4. Let J2(2, 2) be the set of 2-jets (R2, 0)→ (R2, 0). An element z ∈ J2(2, 2)
can be identified with a polynomial map

z(x, y) = (ax+ by + ex2 + 2fxy + gy2, cx+ dy + hx2 + 2ixy + jy2).

Now J2(2, 2) can be identified with R10 by identifying z with the tuple (a, b, . . . , j) and we
can therefore consider the splitting

(L,H) = (Lz, Hz) = ((a, b, c, d) , (e, f, g, h, i, j)) ∈ R4 × R6.
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Consider the set E[r](2, 2) of Cr-germs f : (R2, 0) → (R2, 0). Let r ≥ 2 and let f : U → R2

be a representative of a germ in E[r](2, 2). For p ∈ U we can define j1f(p) ∈ J1(2, 2) and

j2f(p) ∈ J2(2, 2) as the 1- and 2-jet, respectively, of f
(
(x, y) + p

)
− f(p) at (x, y) = 0 . For

any f ∈ E[r](2, 2) we can consequently define germs j1f : (R2, 0)→ J1(2, 2) and j2f : (R2, 0)→
J2(2, 2) and thus define the germ (Lf , Hf ) by (Lf , Hf )(p) = (Lj2f(p), Hj2f(p)). Let Γ ⊂ J2(2, 2)
be defined by

Γ = { (a, . . . , j) | ad− bc = 0,

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
0
0

)
},

via our identifications. We will see in Section 3 that Γ is the set of singular 2-jets which are not
folds.

Let ω ∈ Jr(2, 2) be a singular jet which we identify with a polynomial map ω : R2 → R2 of
degree ≤ r. Assume that 0 is not isolated in Σ(ω) and that ω is not the zero jet. Since Σ(ω) is
algebraic, it follows that there exists ρ0 > 0 such that when 0 < ρ < ρ0 then (Σ(ω)−{0})∩B(0, ρ)
(where B(0, ρ) ⊂ R2 is the open ball with center 0 and radius ρ) is non-singular, has finitely
many topological components, 0 is in the closure of each component, and the number of such
components is independent of ρ (this follows for example from the results of chapter 2 of [11]).
We denote these components by C1, . . . , CN with no reference to the ball B(0, ρ). As explained
in the introduction, these curves have a well defined tangent direction at the origin.

For each ε > 0, define

Hε =
{
p | d(j1ω(p),Σ) ≤ ε ‖p‖r−1

}
.

Here Σ ⊂ J1(2, 2) is the set of singular 1-jets, d(j1ω(p),Σ) denotes the distance inf{
∥∥j1ω(p)− z

∥∥ | z ∈
Σ}, where ‖·‖ is the usual Euclidean norm when 1-jets are identified with vectors in R4 (when
points in some finite dimensional linear spaces are identified with vectors in Euclidean spaces
‖·‖ will always (unless otherwise stated) denote the Euclidean norm via the identification). For
every ε > 0, Hε is a closed semialgebraic set with Σ(ω) ⊂ Hε (this is a consequence of Proposition
2.2.8 of [1] and the Tarski-Seidenberg Theorem).

We now have the following proposition:

Proposition 2.1. Let r ≥ 2 and ω ∈ Jr(2, 2) be a singular, non-zero jet such that 0 is not
isolated in Σ(ω). Let Γ, ρ0, C1, . . . , CN and Hε be as explained above. Consider the following
condition:

(I) There is a neighbourhood U of 0 and constants C > 0 such that if p ∈ U and (L,H) ∈ Γ,
then

‖Lω(p)− L‖+ ‖Hω(p)−H‖ ‖p‖ ≥ C ‖p‖r−1
.

Assume that condition (I) is satisfied. Then there exists ε0 > 0 such that if ρ0 above is suf-
ficiently small, then the following is satisfied: For each open ball B(0, ρ) ⊂ R2 with center 0
and radius ρ < ρ0, and for each ε, 0 < ε < ε0, (Hε − {0}) ∩ B(0, ρ) has exactly N connected
components, and we can label the components of (Hε − {0}) ∩B(0, ρ) by H1, . . . ,HN , such that
Ci ⊂ Hi.

Now we have:

Theorem 2.2 (Main Theorem). Let r > 2 and let ω ∈ Jr(2, 2) be a jet as described in Propo-
sition 2.1 . Let Γ, C1, . . . , CN and Hε be as defined above and assume that condition (I) of
Proposition 2.1 is satisfied. Let ρ0 and ε0 be as in the conclusion of 2.1. Consider the following
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condition :

(II) There exist ρ > 0 with ρ < ρ0 and ε > 0 with ε < ε0 and a constant C > 0 such that
if Hi and Hj, i 6= j are components of (Hε − {0}) ∩B(0, ρ) and p ∈ Hi ∪ {0} and q ∈ Hj ∪ {0}
then

‖ω(p)− ω(q)‖ ≥ C(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖ .
Assume also that the condition (II) above is satisfied, then ω is A0-sufficient in E[r](2, 2) .

Moreover, the condition (I) of Proposition 2.1 is a necessary condition for A0-sufficiency in
E[r](2, 2) for all jets in Jr(2, 2) with r > 2, and if we consider singular, non-zero jets ω where 0
is not isolated in Σ(ω), and where all the components C1, . . . , CN of Σ(ω) − {0} have different
tangent directions at 0, then condition (II) above is also a necessary condition for A0-sufficiency
in E[r](2, 2).

Remark 1. One may conjecture that (I) together with (II) is equivalent to A0-sufficiency for all
jets with non isolated critical point at 0. In fact one may sharpen this, and restrict (II) to Σ(ω)
and conjecture that (I) together with this restricted version of (II) is equivalent to A0-sufficiency
for all such jets. In two preprints [12] and [13], the second author has verified this conjecture for
jets where all the components C1, . . . , CN of Σ(ω)−{0} have different tangent directions at 0, for
jets of rank 1 and for weighted homogeneous jets. In fact for homogeneous jets, A0-sufficiency
is equivalent to the geometrical condition that the jets only have fold singularities outside 0 and
have no singular double points. The proofs of these results given in [12] and [13] depend however
heavily on the results and techniques given in this article.

For jets ω where 0 is isolated in Σ(ω) we have the following sufficiency theorem:

Theorem 2.3. Let ω ∈ Jr(2, 2) with r ≥ 2 be a singular jet and assume that there exists a
neighborhood U of 0 such that Σ(ω) ∩ U = {0}. Then ω is R0-sufficient in E[r](2, 2) if and only
if ω satisfies the condition (I) in Proposition 2.1.

Remark 2. Let ω = (f, g). Note that R0-sufficiency is by [2] (or [14]) equivalent to an inequality
d(∇f(p),∇g(p)) ≥ C||p||r−1, in fact in [2] it is proven that this inequality also is equivalent to
A0-sufficiency for jets with an isolated critical point at 0. We will see in Subsection 4.1 below
that this inequality is trivially equivalent to the inequality d(j1ω(p),Σ) ≥ C||p||r−1. The left
hand side of the inequality (I) in Proposition 2.1 is a sort of measure of the distance from the
jet j2ω(p) to the set of singular 2-jets which are not folds. So a priori, this is a much weaker
inequality than the inequality d(j1ω(p),Σ) ≥ C||p||r−1, but we will show in Subsection 4.1 that
these two inequalities actually are equivalent for jets ω with Σ(ω) = {0}, proving Theorem 2.3.
Together with the conclusion of Theorem 2.2 we thus get that R0-sufficiency, A0-sufficiency and
(I) are equivalent conditions for jets in Jr(2, 2) with an isolated critical point at 0.

3. Folds

As remarked above, the left hand side of the inequality (I) of Proposition 2.1 somehow mea-
sures the distance from the 2-jet j2ω(p) to the set of singular jets which are not folds. To see
this we first have to study fold points and make some estimates in both J1(2, 2) and J2(2, 2).

By definition, a mapping F : R2 → R2 has a fold singularity at a point p if j1F (p) ∈ Σ1,
where Σ1 is the set of jets of rank 1, j1F t Σ1 at p and kerDF (p) + TpΣ(F ) = R2. We say
that a jet z = (a, . . . , j) ∈ J2(2, 2) is a fold if the associated polynomial mapping z(x, y) =
(f(x, y), g(x, y)) = (ax+ · · ·+ gy2, cx+ · · ·+ jy2) has a fold singularity at 0.



A0-SUFFICIENCY OF JETS FROM R2 TO R2 23

We want to describe the set of folds in J2(2, 2) explicitly. Since the Jacobian matrix of z at
0 is

(
a b
c d

)
, ad− bc = 0 is the equation of the singular jets Σ in J1(2, 2). Consider the mapping

(a, b, c, d) 7→ ad − bc. When (a, b, c, d) ∈ Σ1 the gradient of this mapping, (d,−c,−b, a), will be
a normal vector of Σ1 at (a, b, c, d). Then j1z t Σ1 if and only if at least one of ( ∂

∂xj
1z)(0),

( ∂∂y j
1z)(0) is not perpendicular to (d,−c,−b, a), that is

(
ai−bh−cf+de
aj−bi−cg+df

)
6= ( 0

0 ). On the other

hand, we have Jz(x, y) = (∂f∂x
∂g
∂y −

∂f
∂y

∂g
∂x )(x, y), and a direct computation gives us that

∇Jz(0) = 2

(
ai− bh− cf + de
aj − bi− cg + df

)
.

For j1z t Σ1, the vector
(
ai−bh−cf+de
aj−bi−cg+df

)
is therefore a normal vector to Σ(z) at 0. The vector(

aj−bi−cg+df
−ai+bh+cf−de

)
will consequently span T0Σ(z), and the condition kerDz(0) + T0Σ(z) = R2 is

obviously equivalent to

Dz(0)

(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
6=
(

0
0

)
.

Thus we see that the set

Γ = { (a, . . . , j) | ad− bc = 0,

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
0
0

)
}

is the set of singular 2-jets which are not folds.

3.1. Distance from a jet to Σ in J1(2, 2). Let F,G be nonnegative functions. We will use
the notation F ∼ G if there are constants s, t > 0 such that sF ≤ G ≤ tF . Consider a jet
z ∈ J1(2, 2) identified with a matrix M =

(
a b
c d

)
. By ‖M‖, we mean the standard Euclidean

norm ‖M‖ = (a2 + b2 + c2 + d2)
1
2 . Our first task will be to estimate the distance d(z,Σ) from a

z to Σ ⊂ J1(2, 2).
Suppose X = (A B

C D ) is a singular jet realizing the distance R from
(
a b
c d

)
to Σ. It is clear that

X is an element of Σ1. A normal vector to Σ1 at (A B
C D ) is

(
D −C
−B A

)
, so there is a t with

M −X =

(
a b
c d

)
−
(
A B
C D

)
= t

(
D −C
−B A

)
giving

detM = t

∥∥∥∥(A B
C D

)∥∥∥∥2

, R = |t| ·
∥∥∥∥( D −C
−B A

)∥∥∥∥ =
|ad− bc|∥∥∥∥(A B
C D

)∥∥∥∥ .
Now, suppose ‖( ac )‖ ≥

∥∥( b
d

)∥∥. Since ( a 0
c 0 ) ∈ Σ,

R ≤
∥∥∥∥(a b

c d

)
−
(
a 0
c 0

)∥∥∥∥ =

∥∥∥∥(bd
)∥∥∥∥ ≤ 1√

2

∥∥∥∥(a b
c d

)∥∥∥∥ .
The same argument can be applied if ‖( ac )‖ ≤

∥∥( b
d

)∥∥, so in any case,

R ≤ 1√
2

∥∥∥∥(a b
c d

)∥∥∥∥ .
By the triangle inequality,

(3.1) (1− 1√
2

)

∥∥∥∥(a b
c d

)∥∥∥∥ ≤ ∥∥∥∥(A B
C D

)∥∥∥∥ ≤ (1 +
1√
2

)

∥∥∥∥(a b
c d

)∥∥∥∥ .
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So from this and from the expression for R above, we get that

(3.2) (2−
√

2)
|Jz(x, y)|
‖Dz(x, y)‖

≤ R = d
(
j1z(x, y),Σ

)
≤ (2 +

√
2)
|Jz(x, y)|
‖Dz(x, y)‖

,

and hence,

(3.3)
|Jz(x, y)|
‖Dz(x, y)‖

∼ d
(
j1z(x, y),Σ

)
for every non-zero jet z ∈ Jr(2, 2).

3.2. Distance from a singular jet to Γ in J2(2, 2). Let z = (a, b, . . . , j) ∈ J2(2, 2) with
ad− bc = 0. Let

E = Ez = {ω ∈ Γ|Lω = (a, b, c, d)}.
We want to estimate distance d(z, E), i.e. the distance from a singular 2-jet z to the set of
singular 2-jets with the same linear part as z satisfying the equation

(3.4)

(
L1

L2

)
:=

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
0
0

)
.

If a = b = c = d = 0, then the distance is 0 of course. Suppose
(
a b
c d

)
is singular and non-zero.

E is the linear subspace R6 with coordinates (e, . . . , j) satisfying(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
(e, f, g, h, i, j) · (−bd, ad+ bc,−ac, b2,−2ab, a2)
(e, f, g, h, i, j) · (−d2, 2cd,−c2, bd,−ad− bc, ac)

)
=

(
0
0

)
So E = sp{v1, v2}⊥, where

v1 = (−bd, ad+ bc,−ac, b2,−2ab, a2)

v2 = (−d2, 2cd,−c2, bd,−ad− bc, ac).
If Hz = (e, f, g, h, i, j), then the distance we are seeking is the length of the projection pE of

(e, f, g, h, i, j) onto E⊥. We notice that since
(
a b
c d

)
is singular, v1 and v2 are linearly dependent,

and assuming that none of them are zero (otherwise, the expressions simplify),

pE =
1

2

(
L1

‖v1‖2
v1 +

L2

‖v2‖2
v2

)
,

and so the distance R is

R = ‖pE‖ =
1

2

(
|L1|
‖v1‖

+
|L2|
‖v2‖

)
.

Suppose sup{a2, b2, c2, d2} ∈ {a2, b2} and put N =
∥∥( a b

c d

)∥∥2
. It is easily seen that

1

16
N2 ≤ (sup{a2, b2, c2, d2})2 ≤ ‖v1‖2 ≤ 12(sup{a2, b2, c2, d2})2 ≤ 12N2,

and we get

(3.5)
1

4
N ≤ ‖v1‖ ≤ 2

√
3N.

In this case, R = |L1|
‖v1‖ and

(3.6)
|L1|

2
√

3N
≤ R ≤ 4|L1|

N
.
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Similarly, if sup{a2, b2, c2, d2} ∈ {c2, d2},

(3.7)
|L2|

2
√

3N
≤ R ≤ 4|L2|

N
.

Notice that the left inequalities in (3.6) and (3.7) hold without the assumptions regarding which
elements are realizing sup{a2, b2, c2, d2}. By adding the left sides of the inequalities (3.6) and

(3.7) we get (|L1|+ |L2|)/(2
√

3N) ≤ 2R. Also, one of the inequalities on the right side of either
(3.6) or (3.7) must hold, so certainly 2R ≤ 8(|L1|+ |L2|)/N . We get

(3.8)

∥∥∥∥(L1

L2

)∥∥∥∥
2
√

3N
≤ |L1|+ |L2|

2
√

3N
≤ 2R ≤ 8

|L1|+ |L2|
N

≤ 16

∥∥∥∥(L1

L2

)∥∥∥∥
N

.

From this we see that

(3.9)

∥∥∥∥(L1

L2

)∥∥∥∥
N

=

∥∥∥∥(a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)∥∥∥∥∥∥∥∥(a b
c d

)∥∥∥∥2 ∼ R = d(z, Ez).

In the language of partial derivatives and differentials of a Cr mapping f with p ∈ Σ(f),
inequality (3.9) reads

(3.10) d(Hf (p), Ej2f(p)) ∼

∥∥∥∥Df(p)

( ∂
∂yJf(p)

− ∂
∂xJf(p)

)∥∥∥∥
‖Df(p)‖2

.

3.3. Smoothness of the distance function and proofs of Proposition 2.1 and Theo-
rem 2.3. Let ω ∈ Jr(2, 2). Before we can prove Proposition 2.1, we have to investigate the
smoothness properties of the distance map we are about to define. Let d : R2 → R be the
map p 7→ d(p) = d(j1ω(p),Σ). We want information about where d is smooth. To this end,

let d′ : J1(2, 2) → R be the map A =

(
a b
c d

)
7→ d(A,Σ) = inf{‖A−X‖ |X ∈ Σ}. Let

A =

(
a b
c d

)
∈ J1(2, 2) \ Σ. Consider B = {Y |A − Y ∈ Σ}. Then Y ∈ B if and only if there

exists w ∈ R2 with ‖w‖ = 1 such that Aw = Yw. Since ‖Yw‖ ≤ ‖Y ‖, we get that

inf{‖Aw‖ | ‖w‖ = 1} ≤ d′(A).

On the other hand, let λ = inf{‖Aw‖ | ‖w‖ = 1} and let w = ( uv ) be a unit vector such that
λ = ‖Aw‖. Let Y be the matrix given by Yw = Aw and Y (−vu ) = ( 0

0 ). Then ‖Y ‖ = ‖Aw‖
and it follows that

(3.11) d′(A) = inf{‖Aw‖ | ‖w‖ = 1}.

From this we see that

d′(A) = (inf{|wTATAw| ; ‖w‖ = 1}) 1
2 = (inf{|β| ; β eigenvalue ofATA}) 1

2 .

Calculating the eigenvalues of the symmetric matrix ATA, we find that

d′(A) =
1√
2

√
‖A‖2 −

√
‖A‖4 − 4(detA)2.
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If we want to find an explicit expression for X =

(
x y
z w

)
∈ Σ such that d′(A) = ‖A−X‖, we

can use the method of Lagrange multipliers. The coordinates of X have to satisfy the following
equations:

x− a = λw(3.12)

y − b = −λz(3.13)

z − c = −λy(3.14)

w − d = λx(3.15)

xw − yz = 0.(3.16)

Analyzing this system, we find that if |det(A)| < 1
2 ‖A‖

2
(note that the inequality |det(A)| ≤

1
2 ‖A‖

2
holds for any A), then λ 6= ±1 and then the solution of the above system is given by

(3.17) x =
a+ λd

1− λ2
, y =

b− λc
1− λ2

, z =
c− λb
1− λ2

, w =
d+ λa

1− λ2
.

where λ is given by

λ1 =
−‖A‖2 +

√
‖A‖4 − 4(detA)2

2 detA
or λ2 =

−‖A‖2 −
√
‖A‖4 − 4(detA)2

2 detA
,

and X is given by (3.17) with λ = λ1. From the expression of d′ above we see that d′ is smooth

when detA 6= 0 and |detA| 6= 1
2 ‖A‖

2
. d is consequently smooth on the complement of the set

Σ(ω) ∪ {p | |Jω(p)| = 1
2 ‖Dω(p)‖2}. Denote this complement by V . Let

S = {p = (x, y) ∈ V | ∇d(p) · (y,−x) = 0}.

Then

S = {p ∈ V | d|{q∈V | ‖q‖=‖p‖ } has a stationary point at p}.
From the definition of V and the expression of d′ given above it follows that S is a semialgebraic
set. Now we have the following lemma:

Lemma 3.1. Assume ω satisfies condition (I) of 2.1, then there is a neighborhood U of 0 and
a C > 0 such that

d(p) = d(j1ω(p),Σ) ≥ C ‖p‖r−1

when p ∈ S ∩ U .

Proof. Consider the set

D ={(p,A) ⊂ S × Σ |
∥∥j1ω(p)−A

∥∥ ≤ ∥∥j1ω(q)−B
∥∥

for all q ∈ S with ‖p‖ = ‖q‖ 6= 0 andB ∈ Σ}.

An application of the Tarski-Seidenberg Theorem shows that D is semialgebraic. Assume that
the inequality of the lemma is not satisfied. Then (0, j1ω(0)) ∈ D and the curve selection lemma
implies that we can find an analytic curve γ̃ : [0, δ) → R2 × Σ with γ̃((0, δ)) ⊂ D and γ̃(0) =

(0, j1ω(0)). Let γ̃(t) = (γ(t), A(t)). We must have that
∥∥j1ω(γ(t))−A(t)

∥∥ = o(‖γ(t)‖r−1
).

Let

A(t) =

(
a(t) b(t)
c(t) d(t)

)
.
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Then

j1ω(γ(t))−A(t) = s(t)

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

where |s(t)| =
∥∥j1ω(t)−A(t)

∥∥. For each t let βt(u) be a curve such that βt(0) = γ(t), ‖β′t(u)‖ =

1 and ‖βt(u)‖ = ‖γ(t)‖ for each u. Let At(u) ∈ Σ be such that d(j1ω(βt(u)),Σ) = At(u). It
is clear that At(u) ∈ Σ1, and since At(u) is given by equation (3.17) with λ = λ1, it is clear
that At(u) is unique and smooth in u for small u. Moreover, At(0) = A(t). By construction,∥∥j1ω(βt(u))−At(u)

∥∥2
must have a stationary point for u = 0. So

d

du

∥∥j1ω(βt(u))−At(u)
∥∥2 |u=0

= 2

(
d

du
j1ω(βt(u))|u=0 −

d

du
At(u)|u=0

)
· (j1ω(γ(t))−A(t)) = 0.

(Here ”·”denotes the standard Euclidean inner product in J1(2, 2) identified with R4 via the
coordinates (a, b, c, d).)

Now, d
duAt(u)|u=0 ∈ TA(t)Σ

1, and since j1ω(γ(t)) − A(t) is a normal vector to TA(t)Σ
1, we

get that (
d

du
j1ω(βt(u))|u=0

)
· (j1ω(γ(t))−A(t)) = 0.

So

(
d

du
j1ω(βt(u))|u=0

)
·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

=
(
Dj1ω(γ(t))w(t)

)
·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= 0,

where w(t) is the unit vector d
duβt(u)|u=0.

Let ‖γ(t)‖ ∼ tl and |s(t)| =
∥∥j1ω(γ(t))−A(t)

∥∥ ∼ tq. Then q > l(r − 1). Since we have that

d

dt

∥∥j1ω(γ(t))−A(t)
∥∥2 ∼ t2q−1,

we get that (
d

dt
(j1ω(γ(t))−A(t))

)
· (j1ω(γ(t))−A(t)) ∼ t2q−1

and consequently that

d

dt
(j1ω(γ(t))−A(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

∼ tq−1.

Since d
dtA(t) ∈ TA(t)Σ

1, and

(
d(t) −c(t)
−b(t) a(t)

)
is a a normal vector to TA(t)Σ

1, we must have

d

dt
(j1ω(γ(t))) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

∼ tq−1.

Now d
dt (j

1ω(γ(t))) = Dj1ω(γ(t))γ′(t). Let v(t) = γ′(t)
‖γ′(t)‖ . Since ‖γ′(t)‖ ∼ tl−1, we get that

tq−l ∼ (Dj1ω(γ(t))v(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= o(tl(r−1)−l) = o(‖γ(t)‖r−2
).
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Let us consider v(t) and w(t) above as two unit vectors in Tγ(t)R2. Since γ(t) is analytic,

v(t) = γ′(t)
‖γ(t)‖ and w(t) ·γ(t) = 0, we must have v(t) ·w(t)→ 0 as t→ 0. Let e1(t) = ∂

∂x ◦γ(t) and

e2(t) = ∂
∂y ◦γ(t), we must then have e1(t) = s1(t)v(t)+p1(t)w(t) and e2(t) = s2(t)v(t)+p2(t)w(t),

where |si(t)| < 2 and |pi(t)| < 2 for small t. From this and from above we get that

(Dj1ω(γ(t))e1(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= o(‖γ(t)‖r−2
)

and

(Dj1ω(γ(t))e2(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= o(‖γ(t)‖r−2
).

For fixed t, write j2ω(γ(t)) as in Section 2 in the form

j2ω(γ(t)) =
(
ã(t)x+ b̃(t)y + · · ·+ g̃(t)y2, c̃(t)x+ d̃(t)y + · · ·+ j̃(t)y2

)
.

Then

Dj1ω(γ(t))e1(t) = 2

(
ẽ(t) f̃(t)

h̃(t) ĩ(t)

)
.

We thus get that

2

(
ẽ(t) f̃(t)

h̃(t) ĩ(t)

)
·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

=2
a(t)̃i(t)− b(t)h̃(t)− c(t)f̃(t) + d(t)ẽ(t)

‖A(t)‖
=o(‖γ(t)‖r−2

).

In a similar way we get that

2
a(t)j̃(t)− b(t)̃i(t)− c(t)g̃(t) + d(t)f̃(t)

‖A(t)‖
= o(‖γ(t)‖r−2

).

Let z̃(t) be the singular 2- jet with Lz̃(t) = (a(t), b(t), c(t), d(t)) and

Hz̃(t) = Hω(γ(t)) =
(
ẽ(t), f̃(t), g̃(t), h̃(t), ĩ(t), j̃(t)

)
. From above it is clear that∥∥∥∥(a(t) b(t)

c(t) d(t)

)(
a(t)j̃(t)− b(t)̃i(t)− c(t)g̃(t) + d(t)f̃(t)

−a(t)̃i(t) + b(t)h̃(t) + c(t)f̃(t)− d(t)ẽ(t)

)∥∥∥∥∥∥∥∥(a(t) b(t)
c(t) d(t)

)∥∥∥∥2 = o(‖γ(t)‖r−2
).

From (3.9) it is then clear that there exists a jet z(t) = (Lz(t), Hz(t)) ∈ Γ with Lz(t) =

(a(t), b(t), c(t), d(t)) such that
∥∥Hω(γ(t))−Hz(t)

∥∥ = o(‖γ(t)‖r−2
). It follows that∥∥Lω(γ(t))− Lz(t)

∥∥+
∥∥Hω(γ(t))−Hz(t)

∥∥ ‖γ(t)‖ = o(‖γ(t)‖r−1
)

contradicting (I). �

Lemma 3.2. Assume ω satisfies condition (I) of 2.1 with neighbourhood U and constant C > 0,
then

‖Dω(p)‖ ≥ C ‖p‖r−1
.
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when p ∈ U .

Proof. It is clear that (0, Hω(p)) ∈ Γ (where 0 is the zero-jet in J1(2, 2)) for each p, so

‖Dω(p)‖ = ‖Lω(p)− 0‖+ ‖Hω(p)−Hω(p)‖ ‖p‖ ≥ C ‖p‖r−1
.

and the lemma follows. �

Proof of Proposition 2.1. Let ω be as in Proposition 2.1 satisfying condition (I). As pointed
out above, the function d is smooth at points p which are not singular and satisfy |Jω(p)| 6=
1
2 ‖Dω(p)‖2. Let the radius ρ0 in the statement of Proposition 2.1 also be chosen so small
that the conclusions of Lemma 3.1 and Lemma 3.2 hold when U = B(0, ρ) and 0 < ρ < ρ0.
From Lemma 3.2 it then follows that if d is not smooth at p and p is a regular point, then

|Jω(p)| = 1
2 ‖Dω(p)‖2 ≥ C

2 ‖Dω(p)‖ ‖p‖r−1
, where C is given in Lemma 3.2. So, if ε < 2−

√
2

2 C,
it follows from inequality (3.2) that d is smooth in (Hε−Σ(ω))∩B(0, ρ) when ρ < ρ0. Also assume
that ε < C where this time C is the constant of Lemma 3.1. It follows that (Hε−{0})∩B(0, ρ)
contains no points in S when ρ < ρ0.

The set (Hε − {0}) ∩ B(0, ρ) is semialgebraic and has consequently finitely many connected
components, and each component Ci is contained in one such component. If ρ0 is chosen small
enough, we may apply Theorem 9.3.6 of [1], and conclude that Hε ∩ B(0, ρ) is homeomorphic
to the cone with vertex 0 and basis Hε ∩ {p | ‖p‖ = ρ}. Since this basis is semialgebraic, and
hence a finite union of closed segments and isolated points, it follows that each component of
(Hε − {0})∩B(0, ρ) is a cone with the vertex 0 removed and with basis either a closed segment
or a point of the circle {p | ‖p‖ = ρ}. Consider such a component Hk of (Hε − {0}) ∩ B(0, ρ)
and a point p ∈ Hk. Assume Hk contains none of the components Ci. If p is an isolated point
in Hk ∩ {q | ‖q‖ = ‖p‖}, then p is a local minimum of the function d|{q | ‖q‖=‖p‖}. If p is not
isolated, then p is a point in Hk ∩ {q | ‖q‖ = ‖p‖} and this set is a 1-dimensional compact curve
which also must contain a local minimum of the function d|{q | ‖q‖=‖p‖} in its interior. Since Hk

does not contain any of the curves Ci, d|{q | ‖q‖=‖p‖} is smooth at this local minimum so this
minimum must be a point in S. From above we have that this is impossible.

If Hk contains two components Ci, Cj of Σ(ω) − {0}, then Hk ∩ {q | ‖q‖ = ‖p‖} contains a
1-dimensional compact curve such that the end-points of this curve are singular points and the
interior points are non-singular. Then the function d|{q | ‖q‖=‖p‖} must have a local maximum
at an interior point of this curve. Again, this point must be a point in S which is impossible.
We therefore conclude that it is impossible that a component of (Hε − {0}) ∩ B(0, ρ) contains
several or no components of Σ(ω)− {0}. This completes the proof of Proposition 2.1. �

Proof of Theorem 2.3. We will need the following lemma.

Lemma 3.3. Let ω be a jet with Σ(ω) = {0} (as a set germ at 0). Consider the following
inequality:
There exist a constant C and a neighbourhood U of 0 such that

(I′) d(p) = d(j1ω(p),Σ) ≥ C ‖p‖r−1

for p ∈ U . Then (I ′) is equivalent with the inequality (I) of Proposition 2.1.

Proof of Lemma 3.3. Assume that the inequality (I′) is not satisfied. Then we can find a se-

quence pn → 0 such that d(j1ω(pn),Σ) = o(‖pn‖r−1
). If p is a point such that |Jω(p)| =
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1
2 ‖Dω(p)‖2, then it follows from the estimates in (3.2) and Lemma 3.2 that

d(j1ω(p),Σ) ≥ (2−
√

2)
|Jω(p)|
‖Dω(p)‖

=

2−
√

2

2
‖Dω(p)‖ ≥ (2−

√
2)

2
C ‖p‖r−1

,

where C is given in Lemma 3.2. It follows from this and the existence of the sequence pn that
the function d|{p | ‖p‖=ρ} must have an absolute minimum at points p where d is smooth, hence in
the set S, when ρ is sufficiently small. Let p be such a point. From Lemma 3.1 it follows however
that if ‖p‖ is small then d(p) ≥ C ‖p‖r−1

for some C independent of p, and since d|{p | ‖p‖=ρ}
attains an absolute minimum at p this contradicts the existence of the sequence pn. So (I′) must
be satisfied.
Let π2

1 : J2(2, 2)→ J1(2, 2) be the canonical projection. Then Γ ⊂ (π2
1)−1(Σ) and from this, the

implication (I′)⇒(I) is obvious. �

Let f and g be the components of ω. As pointed out in Remark 2, it follows from Lemma
3.3 that we only need to prove the equivalence of the inequality d(j1ω(p),Σ) ≥ C ‖p‖r−1

and

the inequality d(∇f(p),∇g(p)) ≥ C ‖p‖r−1
of [2] (or [14]). From Subsection 3.2, we have

d(j1ω(p),Σ) ∼ |Jω(p)|
‖Dω(p)‖ . From the definition in [2], we get that

d(∇f(p),∇g(p)) = min{||∇f(p)− ∇f(p) · ∇g(p)

||∇g(p)||2
∇g(p)||, ||∇g(p)− ∇g(p) · ∇f(p)

||∇f(p)||2
∇f(p)||}.

If say, ‖∇f(p)‖ ≥ ‖∇g(p)‖, then a straightforward calculation shows that

d(∇f(p),∇g(p)) =
|Jω(p)|
‖∇f(p)‖

≥ |Jω(p)|
‖Dω(p)‖

≥ 1√
2
d(∇f(p),∇g(p)),

hence

d(∇f(p),∇g(p)) ∼ |Jω(p)|
‖Dω(p)‖

and consequently

d(∇f(p),∇g(p)) ∼ d(j1ω(p),Σ).

The conclusion of Theorem 2.3 follows from this. �

4. Stability of the Lojasiewicz inequalities

In this section we prove that the Lojasiewicz inequalities (I) of 2.1 and (II) of 2.2 are in some
sense stable under perturbations of the jet by Cr- mappings with r-jet vanishing to r-th order at
0, and we derive some important geometrical consequences of the two Lojasiewicz inequalities.

4.1. Lojasiewicz inequality (I).. From now on, let ω = (f, g) ∈ Jr(2, 2) for some r ≥ 2 and

with 0 not isolated in Σ(ω). Let ω̃ = (f̃ , g̃) be a Cr map with jrω̃(0) = 0. For t ∈ R, put
ωt(p) = ω(p) + tω̃(p) = (ft, gt). Also, let ε > 0 and let U be a neighbourhood of 0 ∈ R2.

Lemma 4.1. Assume that ω satisfies the condition (I) of Proposition 2.1 for some neighbourhood
U of 0 and some constant C > 0. Then there are constants 0 < C ′ < C and ε > 0 and a
neighbourhood U ′ of 0 such that if t ∈ (−ε, 1 + ε), then condition (I) with constant C ′ holds for
ωt in U ′.
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Proof. Let (L,H) ∈ Γ. By the triangle inequality,

‖Lωt(p)− L‖ ≥ ‖Lω(p)− L‖ − |t| ‖Lω̃(p)‖ ≥ ‖Lω(p)− L‖ − (1 + ε) ‖Lω̃(p)‖ ,
and similarly,

‖Hωt(p)−H‖ ≥ ‖Hω(p)−H‖ − (1 + ε) ‖Hω̃(p)‖ .
Hence,

‖Lωt(p)− L‖+ ‖Hωt(p)−H‖ ‖p‖
≥‖Lω(p)− L‖ − (1 + ε) ‖Lω̃(p)‖+ ‖Hω(p)−H‖ − (1 + ε) ‖Hω̃(p)‖) ‖p‖

≥C
2
‖p‖r−1

when U ′ is so small that ‖Lω̃(p)‖
‖p‖r−1 ≤ C

4(1+ε) and ‖Hω̃(p)‖
‖p‖r−2 ≤ C

4(1+ε) . Such a neighbourhood U ′ exists

for any ε > 0 since jrω̃(0) = 0 implies that ‖Lω̃(p)‖ = o(‖p‖r−1
) and that ‖Hω̃(p)‖ = o(‖p‖r−2

).
Putting C ′ = C

2 completes the proof. �

4.2. Stability of Lojasiewicz inequality (II). Let ω and ωt be as in Subsection 4.1, but
assume that r > 2. We assume that ω satisfies condition (I) of Proposition 2.1 and that U ,
C and ε are so small that by Lemma 4.1, (I) also is satisfied for ωt, t ∈ (−ε, 1 + ε). Let
F : U × (−ε, 1 + ε)→ R3 be the 1-parameter unfolding of ω given by (p, t) 7→ (ωt(p), t).

Lemma 4.2. There are constants C ′, ε > 0 such that if t ∈ (−ε, 1+ε) and p ∈ U ∩(Σ(ωt) \ {0}),
then

(4.1)
‖∇Jωt(p)‖
‖Dωt(p)‖

≥ C ′ ‖p‖r−2
.

Proof. For p ∈ U ∩ (Σ(ωt) \ {0}) we can choose H such that (Lωt(p), H) ∈ Γ. Inequality (I)
implies that for t ∈ I = (−ε, 1 + ε),

(4.2) ‖Hωt(p)−H‖ ‖p‖ ≥ C ‖p‖
r−1

.

Choose H of this type, minimizing the distance ‖Hωt(p)−H‖. It follows from Schwartz inequal-
ity and (3.8) that

(4.3)
‖∇Jωt(p)‖
‖Dωt(p)‖

≥

∥∥∥∥Dωt(p)( ∂
∂yJωt(p)

− ∂
∂xJωt(p)

)∥∥∥∥
‖Dωt(p)‖2

≥ 1

8
‖Hωt(p)−H‖ ≥

C

8
‖p‖r−2

.

The lemma follows by choosing C ′ ≤ C
8 . �

Let F0 = F |(U\{0})×(−ε,1+ε). It is easily seen that JF (p, t) = Jωt(p). Thus, Lemma 4.2

implies that 0 is a regular value of JF0 and we can conclude that Σ(F0) is a 2-dimensional Cr−1

submanifold of R3. Define a vector field v on Σ(F ) by

v(p, t) =

{
(0, 0, 1), if p = 0
pT (p,t)

[pT (p,t)]t
, otherwise,

where pT means the projection of k = (0, 0, 1) into the tangent plane of the manifold Σ(F0) and
vt denotes the t-component of any vector v. Notice that vt ≡ 1 on Σ(F ).

Lemma 4.3. ‖v(p, t)− (0, 0, 1)‖ = o
(
‖p‖

)
.
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Proof. In block-form the matrix of DF reads

DF =

(
Dωt ω̃

0 1

)
.

As mentioned above, we see that JF = 0 ⇔ Jωt = 0. Put h(p, t) = Jωt(p). Then Σ(F ) =
h−1(0), and hence, ∇h(p, t) ⊥ T(p,t)Σ(F0).

Let pN (p, t) be the projection of k = (0, 0, 1) onto sp{∇h(p, t)}. The projection pT (p, t) of
k into T(p,t)Σ(F0) is

pT = k− pN = k−
∂h
∂t

‖∇h‖2
∇h.

The t-component of pT equals ‖∇Jωt‖
2

‖∇h‖2 . Thus,

v =
‖∇h‖2

‖∇Jωt‖2
k−

∂h
∂t

‖∇Jωt‖2
∇h.

Using that vt = 1, we get

‖v − k‖ =

∣∣∂h
∂t

∣∣
‖∇Jωt‖

.

Now, ∂h
∂t = ∂

∂tJωt, where

Jωt = Jω + t

(
∂f

∂x

∂g̃

∂y
− ∂f

∂y

∂g̃

∂x
+
∂f̃

∂x

∂g

∂y
− ∂f̃

∂y

∂g

∂x

)
+ t2Jω̃.

From Lemma 3.2 we have that ‖Dω(p)‖ ≥ C ‖p‖r−1
. Since

Jω̃(p) = o(‖p‖r−1 · ‖p‖r−1
)

and (
∂f

∂x

∂g̃

∂y
− ∂f

∂y

∂g̃

∂x
+
∂f̃

∂x

∂g

∂y
− ∂f̃

∂y

∂g

∂x

)
(p) = o(‖p‖r−1

) ‖Dω(p)‖ ,

we can conclude that ∂h
∂t (p, t) = o(‖p‖r−1

) ‖Dω(p)‖. By rearranging the terms of (4.1) we obtain

1

‖∇Jωt(p)‖
≤ ‖p‖2−r

C ′ ‖Dωt(p)‖
.

Combining all this and the fact that ‖Dωt(p)‖ = ‖Dω(p)‖+ o(‖p‖r−1
), we get

‖v(p, t)− (0, 0, 1)‖ =

∣∣∂h
∂t (p, t)

∣∣
‖∇Jωt(p)‖

= o(‖p‖r−1
) · ‖Dω(p)‖ · ‖p‖2−r

C ′ ‖Dωt(p)‖
= o(‖p‖).

�

We are now going to extend the vector field v to a vector field ξ defined and continuous on all
of U × (−ε, 1+ ε). For simplicity, let I = (−ε, 1+ ε) and U0 = U −{0}. Recall that F0 = F |U0×I .

Let q ∈ U0 × I, If q ∈ Σ(F0), we can find an open neighbourhood V of q in R3 and a Cr−1-
diffeomorphism Φ : V → W of V onto an open neighbourhood W of the origin in R3 such that
Φ(V ∩ Σ(F0)) = W ∩ (R2 × {0}). In W , define a vector field vΦ by

vΦ(x, y, z) = DΦ(Φ−1(x, y, 0))v(Φ−1(x, y, 0)).
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Now, put Vq = V and define

wq(p, t) = DΦ−1(Φ(p, t))vΦ(Φ(p, t))

for (p, t) ∈ Vq. When q ∈ U0× I−Σ(F ), put Vq = U0× I−Σ(F ) and define wq = (0, 0, 1) on Vq.
Gluing these locally defined vector fields together by a partition of unity argument and scaling
the resulting vector field such that the t-component becomes identically 1, we get a vector field
ξ defined on U0 × I extending v. If the Vq’s corresponding to points q ∈ Σ(F0) are chosen small
enough, we obtain

(4.4) ‖ξ(p, t)− (0, 0, 1)‖ = o(‖p‖).

We can extend ξ to all of U × I by defining ξ(0, 0, t) = (0, 0, 1).
This new vector field ξ is continuous, and by construction, ξ is Cr−2 on U0 × I. We have

assumed that r > 2, so ξ is at least C1. Thus for every p ∈ U0 × I there is a local flow line
through p. Of course, the curve γ : I → U × I, t 7→ (0, 0, t), is a flow line through every point of
{0}× I. Thus we have local solutions of ξ through every point of U × I. Although ξ itself is not
differentiable on the t-axis we will see that 4.4 is sufficient for ξ to have a continuous flow near
the t-axis. In fact we have:

Lemma 4.4. There is an open neighbourhood U ′ ⊂ U of the origin in R2 and an injective
continuous map φ : U ′ × I → R3 such that ∀ (p, t) ∈ U ′ × I,

φ(p, t) = (ht(p), t), φ(p, 0) = (p, 0) and
∂

∂t
φ(p, t) = ξ(φ(p, t)).

Proof. Equation 4.4 and the differentiability of ξ in U0 × I imply that the Lipschitz condition
of Theorem 2 in [8] is satisfied by ξ. Thus we can find the flow ϕ of Theorem 2 in [8]. From
4.4 and the fact that the t-component of ξ is 1, it clear that if U ′ is small enough the flow line
through each (p, 0), p ∈ U ′ must reach every t-level in I before it reaches the boundary of U × I.
Putting φ(p, t) = ϕ(t, (p, 0)) we get the desired map φ. Since ξ has t-component equal 1, φ can
be written as φ(p, t) = (ht(p), t) for some level-map ht. �

Since ξ is tangent to Σ(F ), we get a map Σ(ω)×{0} → Σ(ωt)×{t} given by (p, 0) 7→ φ(p, t) =
(ht(p), t). This is a homeomorphism of Σ(ω)×{0} onto its image. The map φ therefore induces
homeomorphisms ht|Σ(ω) : Σ(ω)→ Σ(ωt).

Lemma 4.5. Let 0 < δ < ε, then sup
t∈[−δ,1+δ]

‖ht(p)− p‖ = o(‖p‖).

Proof. Suppose there is a constant K > 0 and a sequence {pn} such that ‖pn‖ → 0 and

sup
t∈[−δ,1+δ]

‖ht(pn)− pn‖ > K ‖pn‖ .
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Write φ(p, t) = φp(t) =
(
φ1
p(t), φ

2
p(t), t

)
, ξ(v, t) =

(
ξ1(v, t), ξ2(v, t), 1

)
and pn = (p1

n, p
2
n). Apply-

ing the Mean Value Theorem and equation (4.4), we get that

K ‖pn‖ < sup
t∈[−δ,1+δ]

‖ht(pn)− pn‖

= sup
t∈[−δ,1+δ]

∥∥(φ1
pn(t), φ2

pn(t)
)
− (p1

n, p
2
n)
∥∥

≤ 2(1 + 2δ) sup
t∈[−δ,1+δ]

∥∥∥∥( ∂∂tφ1
pn(t),

∂

∂t
φ2
pn(t)

)∥∥∥∥
= 2(1 + 2δ) sup

t∈[−δ,1+δ]

∥∥(ξ1(φpn(t)), ξ2(φpn(t))
)∥∥

= 2(1 + 2δ)
∥∥(ξ1(vn, tn), ξ2(vn, tn)

)∥∥ = o(‖vn‖)

for (vn, tn) on the curve φpn with∥∥(ξ1(vn, tn), ξ2(vn, tn)
)∥∥ = sup

−δ≤s≤1+δ

∥∥(ξ1(φpn(s)), ξ2(φpn(s))
)∥∥ .

Suppose ‖vn‖ < 2 ‖pn‖. Then we get the contradiction K ‖pn‖ < o(‖pn‖). If this assumption
is wrong, we can find a subsequence of {vn} with ‖vn‖ ≥ 2 ‖pn‖. Let C be the trace of π ◦ φpn ,
where π : R3 → R2 is the projection onto the first two coordinates. We consider the arc length
of C, and see that

1

2
‖vn‖ ≤ ‖vn‖ − ‖pn‖ ≤

∫
C

∥∥(ξ1(φpn(s)), ξ2(φpn(s))
)∥∥ ds

≤ (1 + 2δ)
∥∥(ξ1(vn, tn), ξ2(vn, tn)

)∥∥ = o(‖vn‖)
which is a new contradiction. The lemma follows. �

Lemma 4.6. For small ε > 0, t ∈ I, Σ(ωt) ⊂ Hε in a neighbourhood of the origin in R2.

Proof. From the proof of Lemma 4.3, we get

Jω(p) = Jωt(p) + o(‖p‖r−1
) ‖Dω(p)‖ .

If p ∈ Σ(ωt),
|Jω(p)|
‖Dω(p)‖ = o(‖p‖r−1

), and the lemma follows from (3.3) of Subsection 3.1. �

Remark 3. Let ω̂ be a Cr-realization of ω, then we can define a family ωt = ω+ t(ω̂−ω) of Cr-
realizations such that ω1 = ω̂. Let C1, . . . , CN be the connected components of Σ(ω)\{0}. Since
Σ(ω) \ {0} and Σ(ωt) \ {0} are homeomorphic, Σ(ωt) \ {0} consists of N connected components
for each t. Let ht, t ∈ I be the family of homeomorphisms constructed above. Since h0(Ci) = Ci
and the set {ht(p) | p ∈ Ci, t ∈ I} is connected, it follows from the Lemma 4.6 and Proposition
2.1 that each Σ(ωt) \ {0} has exactly one connected component in each Hi. So if ε > 0 is chosen
so small that the conclusion of 2.1 holds, each such realization ω̂ of ω has exactly one connected
component of Σ(ω̂) \ {0} in each connected component of Hε − {0}.

The corollary below gives a sort of stability property of inequality (II) under perturbation of
the jet by Cr-mappings with r-jet vanishing at 0.

Corollary 4.7. Let the hypothesis be as in Theorem 2.2, and assume that inequality (II) holds
for ω with a constant C > 0. Let ωt be as above. Then there exists a neighbourhood U of
0 ∈ R2 such that if t ∈ [0, 1] and p, q ∈ Σ(ωt) ∩ U are points belonging to different components
of Σ(ωt) \ {0}, then

‖ωt(p)− ωt(q)‖ ≥
C

2
(‖p‖r−1

+ ‖q‖r−1
) ‖p− q‖ .
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The inequality also holds if either p or q is equal 0.

Proof. Write ωt = ω + tω̃. Since jrω̃(0) = 0 we have ‖Dω̃(p)‖ = o(‖p‖r−1
) where this time

‖Dω̃(p)‖ denotes the operator norm. From this follows that

‖ω̃(p)− ω̃(q)‖ =

∥∥∥∥∫ 1

0

Dω̃(sp+ (1− s)q)(p− q) ds
∥∥∥∥

≤ sup
s∈[0,1]

‖Dω̃(sp+ (1− s)q)‖ ‖p− q‖

= o(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖ .

From Remark (3) we get that, if U is sufficiently small, then there exists i, j, i 6= j such that
p ∈ Hi and q ∈ Hj . From inequality (II) and above it follows that

‖ωt(p)− ωt(q)‖ = ‖(ω(p)− ω(q)) + t(ω̃(p)− ω̃(q))‖
≥ ‖ω(p)− ω(q)‖ − |t| ‖ω̃(p)− ω̃(q)‖

≥ C(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖ − o(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖

≥ C

2
(‖p‖r−1

+ ‖q‖r−1
) ‖p− q‖ .

Since ‖ω̃(p)‖ = o(‖p‖r), the last statement of the corollary follows easily from (II) if say, q =
0. �

4.3. Consequences of (I) and (II). The inequalities (I) and (II) from Proposition 2.1 and
Theorem 2.2 have several implications which will be important to us.

Lemma 4.8. If ω ∈ Jr(2, 2) satisfies (I) and (II) in a neighbourhood U of the origin, then there
is a constant K > 0 such that ‖ω(p)‖ ≥ K ‖p‖r for all p in a neighbourhood of the origin.

Proof. Let

A =

{
p | ‖ω(p)‖ = min

‖q‖=‖p‖
‖ω(q)‖ , p, q ∈ U0

}
.

An application of the Tarski-Seidenberg Theorem shows that A is a semi-algebraic set. Hence,
we can apply the curve selection lemma to find an analytic curve β : [0, ε) → R2 with β(0) = 0
and β(0, ε) ⊂ A. Let s be chosen such that ‖β(t)‖ ∼ ts as t → 0. Assume that the lemma
is false. Then ‖ω(β(t))‖ = o(‖β(t)‖r) = o(trs), and differentiation with respect to t gives
‖Dω(β(t))β′(t)‖ = o(trs−1), and since we have that ‖β′(t)‖ ∼ ts−1 we obtain∥∥∥∥Dω(β(t))

β′(t)

‖β′(t)‖

∥∥∥∥ = o(trs−1−s+1) = o(‖β(t)‖r−1
).

Since β′(t)/ ‖β′(t)‖ is a unit vector, it follows from (3.11) of Subsection 3.3 that d(j1ω(β(t)),Σ) =

o(‖β(t)‖r−1
) and we get that β(t) ∈ Hε. From (II) with p = β(t) and q = 0, we get that

‖ω(β(t))‖ ≥ C ‖β(t)‖r, which is a contradiction. �

Corollary 4.9. Suppose (I) and (II) hold. Then there is a neighbourhood U of the origin and
a constant K > 0 such that

‖ωt(p)‖ ≥ K ‖p‖r

for all t ∈ I and p ∈ U .

Proof. This follows easily from Lemma 4.8 since ‖ωt(p)‖ = ‖ω(p)‖+ o(‖p‖r). �
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Remark 4. The hypothesis of Lemma 4.8 can be weakened. In fact, the lemma follows from
inequality (I) alone. This can be seen as follows: If there is a sequence pn → 0 such that
‖ω(pn)‖ = o(‖pn‖r), then we may apply a variant of the technique in the proof of Lemma 4.10
below to show that ω has a Cr- representative which is identically equal 0 along some non-
constant curve starting at 0. Such a representative has singular points different from folds along
this curve, and hence cannot satisfy (I). This will however contradict the conclusion of Lemma
4.1.

Lemma 4.10. Let r > 2. Let ω = (f, g) ∈ Jr(2, 2) be as in the hypothesis of Proposition 2.1 and
assume ω satisfies (I) of Proposition 2.1, then there is a neighbourhood U of 0 and a constant
C > 0 such that for each i either

∀p ∈ Hi, ‖∇f(p)‖ ≥ C ‖p‖r−1

or

∀p ∈ Hi, ‖∇g(p)‖ ≥ C ‖p‖r−1
.

Proof. Assume the lemma is false. Then, by the technique employed in the proof of Lemma 4.8,
there exist analytic curves β(t) and γ(t), t ∈ [0, δ) with β(0) = γ(0) = (0, 0), β(0, δ), γ(0, δ) ⊂ Hi

for sufficiently small δ > 0 such that

(4.5) ‖∇f(β(t))‖ = o(‖β(t)‖r−1
)

and

(4.6) ‖∇g(γ(t))‖ = o(‖γ(t)‖r−1
),

for t > 0. We claim that

(4.7) f(β(t)) = o(‖β(t)‖r).

To see this, assume ‖β(t)‖ ∼ ts and let u be such that |f(β(t))| ∼ tu. Then | ddtf(β(t))| ∼ tu−1,
and also

| d
dt
f(β(t))| = |∇f(β(t)) · β′(t)| ≤ ‖∇f(β(t))‖ · ‖β′(t)‖ = o(tsr−1).

It follows that u− 1 > sr − 1 and the claim follows from this. In the same manner we get

(4.8) g(γ(t)) = o(‖γ(t)‖r).

We consider the curve β, and follow an argument of Kuo’s article [9]. By a suitable rotation
of R2 we can make β tangent to the x-axis at 0. Assume this is the case. By a change of
parameter if necessary, β1(t) = ts and |β2(t)| = o(ts). We make a C1 change of coordinates:

X = x, Y = y − β2(|x| 1s ). In these coordinates, β is the positive X-axis.
Using the Taylor expansion of f about 0, we can write f as a polynomial in Y as follows:

(4.9) f(x, y) = f(X,Y + β2(|X| 1s )) = f̃0(X) + f̃1(X)Y + f̃2(X)Y 2 + · · ·

Putting Y = 0, we get that f̃0(X) = f(X,β2(|X| 1s )) and we see from (4.7) that the function

f0(x) = f̃0(|x|), is a Cr map with jrf0(0) = 0. Differentiating (4.9) with respect to Y and

putting Y = 0, we see that f̃1(X) = ∂f
∂y (X,β2(|X| 1s )), and it follows from (4.5) that the function

f1(x) = f̃1(|x|) is a Cr−1 function with jr−1f1(0) = 0.

Let K = {(x, y) | |y| ≤ |x|, x ≥ 0} ∩ Br(0) where Br(0) is some small open ball around

0. Define F̃ (x, y) = f1(x)(y − β2(|x| 1s )). F̃ is analytic at points (x, y) with x 6= 0. From

(4.5) it follows that dm

dxm f1(x) = o(|x|r−1−m) for m ≥ 0. Furthermore since β2(t) = o(ts),

we get that ∂m

∂xm (y − β2(|x| 1s )) = o(|x|1−m) when m > 0. Also, |y − β2(|x| 1s )| ≤ 2|x| when
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(x, y) ∈ K. Altogether this implies that ∂|m|

∂xm1∂ym2
(F̃ )(p) = o(|(x, y)|r−|m|) with m = (m1,m2)

when p = (x, y) ∈ K − {0}.
Now let Q be the r-th order Taylor field on K with values in R defined by Qm(0) = 0 for

all m and Qm(p) = ∂|m|

∂xm1∂ym2
(F̃ )(p) for all m = (m1,m2) and all p ∈ K \ {0}. It follows from

Lemma 4.11 below that Q is a Cr-Whitney field. Thus, by Whitney’s Extension Theorem Q
has a Cr-extension F defined on a neighbourhood of 0 ∈ R2 such that jrF (0) = 0 (see [10] for
a statement and proof of Whitney’s Extension Theorem).

Apply the same construction to g along γ to obtain g0 and G as Cr-functions both with r-jet
equal 0 at (0). Then define

ω̂ = (f̂ , ĝ) = (f − f0 − F, g − g0 −G).

Then ω̂ is a Cr-realization of ω, and by construction, ∇f̂ = 0 along β(t) and ∇ĝ = 0 along γ(t).
If the traces of β and γ are the same, then obviously ω̂ has singularities which are not folds
along this curve, which contradicts Lemma 4.1. If the traces of β and γ are not intersecting in
a neighbourhood of 0, then we have found a Cr-realization ω̂ of ω such that Σ(ω̂) \ {0} has at
least two connected components in Hi. This will however contradict Remark 3. �

Lemma 4.11. Let U ⊂ Rn be an open set with 0 ∈ U . Let F be a Cr-function defined on U .

Assume that ∂|α|F
∂xα (p) → 0 when p → 0 for each multiindex α with |α| ≤ r. Let K ⊂ {0} ∪ U

be a compact, convex set with 0 ∈ K. Let Q be the r-th order Taylor field on K defined by

Qα(p) = ∂|α|F
∂xα (p) if p 6= 0, and Qα(p) = 0 if p = 0, |α| ≤ r. Then Q is a Cr-Whitney field.

Proof. Let p, q ∈ K. Let m = (m1, . . . ,mn) be a multiindex with |m| ≤ r. Let

RqQ
m(p) = Qm(p)− ∂|m|

∂xm
(
∑
|α|≤r

1

α1! . . . αn!
Qα(q)(x− q)α)

∣∣∣
x=p

.

We must show that RqQ
m(p) = o(‖p− q‖r−|m|) for each such multiindex m. We will only show

this when m = 0 = (0, . . . , 0) since the proof is similar when |m| > 0. Extend F to {0} ∪ U by
putting F (0) = 0. Let p, q ∈ K and define g(t) = F (tp+ (1− t)q). Then g can be extended to a
Cr function on some open interval containing [0, 1] (if q or p is 0 extend g to the zero-function
on (−ε, 0) or (1, 1 + ε) respectively). Note that

g(k)(t) =
∑
|α|=k

k!

α1! . . . αn!
Qα(tp+ (1− t)q)(p− q)α,

for t ∈ [0, 1]. So, by applying an integral version of Taylor’s formula with remainder, we get

RqQ
0(p) = g(1)−

r∑
k=0

1

k!
g(k)(0) =

1

(r − 1)!

∫ 1

0

g(r)(t)(1− t)r−1dt− 1

r!
g(r)(0)

=
1

(r − 1)!

∫ 1

0

(g(r)(t)− g(r)(0))(1− t)r−1dt

=
1

(r − 1)!

∑
|α|=r

(

∫ 1

0

r!

α1! . . . αn!
(Qα(tp+ (1− t)q)−Qα(q))(1− t)r−1dt)(p− q)α.

Now, each Qα is continuous on the compact, convex set K and therefore uniformly continuous,

and from this it follows easily that
∫ 1

0
(Qα(tp+(1−t)q)−Qα(q))(1−t)r−1dt→ 0 when ‖p− q‖ →

0. Since |(p− q)α| ≤ ‖p− q‖r when |α| = r, we thus get that RqQ
0(p) = o(‖p− q‖r). �
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Lemma 4.12. If ω = (f, g) ∈ Jr(2, 2) satisfies the inequalities (I) and (II) in a neighbourhood
U of 0, then there is a smaller neighbourhood U ′ of 0 such that F |Σ(F )∩(U ′×I) is injective.

Proof. It is enough to show that ωt is injective when restricted to Σ(ωt). Consider the component

Hi for some i. By Lemma 4.10 we may assume that ‖∇f(p)‖ ≥ C ‖p‖r−1
for all p in Hi. Then

there is a smaller neighbourhood V of 0 such that ‖∇ft(p)‖ ≥ C
2 ‖p‖

r−1
for all t and p ∈ Hi.

As before, j2ωt(p) is identified with the 10-tuple (a, . . . , j). Σ(ωt) is given by the equation
ad− bc = 0. Suppose ft|Σ(ωt) has an extremum at p ∈ Hi ∩ Σ(ωt). By the method of Lagrange
multipliers, at p,

a = λ · ∂Jωt
∂x

= λ(ai− bh− cf + de)

b = λ · ∂Jωt
∂y

= λ(aj − bi− cg + df).

We have (a, b) = ‖∇ft(p)‖ ≥ C
2 ‖p‖

r−1 6= 0 which implies that λ 6= 0 and hence,(
a b
c d

)(
aj − bi− cg + df

−ai+ bh+ cf − de

)
=

(
0
0

)
.

This means that (Lωt(p), Hωt(p)) ∈ Γ. The conclusion must be that every such p lies outside
some open neighbourhood of the origin, since ωt by assumption satisfies (I). Hence ft and
consequently ωt is injective when restricted to the component of Σ(ωt)\{0} lying in Hi. Together
with Corollary 4.7, this proves the lemma. �

Recall the definition of F0 given above Lemma 4.3. Let M = Σ(F0) and Ω = F (M).

Lemma 4.13. Let U be chosen so small that the conclusions of Lemma 4.1 and Lemma 4.12
hold. Then Ω is a two-dimensional Cr−1 submanifold of the target.

Proof. F |M is an injective continuous map from a compact space to a Hausdorff space, so it
must be a homeomorphism onto its image. So F |M is a topological embedding and by Lemma
4.1, F |M is a Cr−1 immersion, hence a Cr−1 embedding. Thus Ω is a Cr−1 manifold. �

5. Construction of trivializing vector fields in source and target

Let ω ∈ Jr(2, 2) be as in the hypothesis of Proposition 2.1, assume that r > 2 and that ω
satisfies the inequalities (I) and (II) in a neighbourhood U of 0. Let F , M and Ω be as in Section 4,
and assume that the neighborhood U in the definition of M and Ω also is chosen so small that the
conclusion of Corollary 4.9 holds. Clearly, Corollary 4.9 implies that F ((U−U)×I)∩{0}×I = ∅.
It follows that we can find a neighborhood V of 0 in R2 such that (Ω∪({0}×I))∩(V ×I) is closed
in V ×I. Let us change notation and denote Ω∩(V ×I) by Ω. Let (q, t) = (ωt(p), t) = F (p, t) ∈ Ω
for (p, t) ∈ M . Since F |M has rank 2 everywhere, DF (p, t)v ∈ TF (p,t)Ω for all v ∈ R3. With
this in mind, we can define a tangent vector field u on Ω by

u(q, t) = u(F (p, t)) = DF ((p, t))(0, 0, 1) = (ω̃(p), 1).

Since ωt(p) = ω(p) + tω̃(p) and ‖ω̃(p)‖ = o(‖p‖r), it follows from Corollary 4.9 that

‖u(F (p, t))− (0, 0, 1)‖ = o(‖ωt(p)‖) = o(‖q‖).
This equation is similar to the conclusion of Lemma 4.3. Put u|{0}×I = (0, 0, 1). Since Ω is a

Cr−1 manifold in the target, u can be extended to a neighborhood V × I of {0} × I in a way
completely analogous to the way the vector field v, defined in Subsection 4.2, was extended to
all of source. We scale this extended vector field such that the component in the t-direction
becomes 1 and denote this vector field by η. By this construction, η becomes Cr−2 outside the
t-axis, and we get the following lemma which is similar to (4.4).
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Lemma 5.1. ‖η(q, t)− (0, 0, 1)‖ = o(‖q‖).

This lemma implies that η like the vector field ξ constructed in Subsection 4.2 satisfies the
hypothesis of Kuo’s Theorem 3 in [8]. Therefore η has a continuous flow ψ in V × I. Moreover,
since the component of η in the t-direction equals 1, each flow line will live until it reaches either
(V − V )× I or V × {−ε, 1 + ε}. An easy estimate using 5.1 shows that if V1 ⊂ V is sufficiently
small and (q, t) ∈ V1× I then ψ(q,t) will stay close to {0}× I and therefore reach V ×{−ε, 1 + ε}
and therefore cannot have any closure points in (V −V )×I. So when (q, t) ∈ V1×I we can define
the flow ψ(q,t)(s) for s ∈ (−ε− t, 1 + ε− t), especially each flow line through points in V1 × {0}
can be defined on I, and we will get a map k : V1× I → R3 defined by k(q, t) = kt(q) = ψ(q,0)(t).
Each kt is a homeomorphism which maps the 0-level of Ω to the t-level of Ω. Let us choose such
a neighborhood V1 and let U1 ⊂ U be a neighborhood of 0 in R2 such that F (U1 × I) ⊂ V1 × I.
Define a tangent vector field w on M ∩ (U1 × I) by

DF ((p, t))w(p, t) = u(F (p, t)).

This definition is unambiguous because we have required w to be tangential and F |M∩(U1×I) :
M ∩ (U1 × I) → Ω is an immersion. Put w|{0}×I = (0, 0, 1). Outside M ∪ {0} × I, DF is
invertible so we can define an extension ζ of w to all of source by the equation

DF(p,t)ζ(p, t) = η(F (p, t)).

We are now going to show that ζ has a continuous flow. To this end, we will need the lemma
below.

Lemma 5.2. If p ∈ M , then there is a neighbourhood W of p such that for all q ∈ W , F (q) ∈
Ω⇒ q ∈M .

Proof. Let p ∈M . Then p is a fold point and if r ≥ 4, this will follow from the standard normal
form of a fold. When r > 2, there are (for example following the arguments in [15] Section
15), Cr−1-coordinates (x, y, t) around p, (u, v, t) around F (p) in which p = (0, 0, 0) = F (p) and
such that in these coordinates F has the form F (x, y, t) = (x, h(x, y, t), t) where h(x, 0, t) =
∂h
∂y (x, 0, t) = 0 6= ∂2h

∂y2 (0, 0, 0). In these coordinates, Σ(F ) = {y = 0} and F (Σ(F )) = {v = 0}.
The lemma now follows by an easy argument using Taylor’s formula. �

The existence and continuity of the flow of η is given in the following lemma.

Lemma 5.3. Let 0 < δ < ε. Then there exists a neighborhood U2 ⊂ U1 such that ζ has a
continuous flow ϑ(p, t, s) = ϑ(p,t)(s) in the set {(p, t, s) | (p, t) ∈ U2× (−δ, 1 + δ), s ∈ (−δ− t, 1 +
δ − t)}.

Proof. Again, change notation and put M := M ∩(U1×I). Consider {{0}×I,M,U1×I \Σ(F )}
as a stratification of U1 × I. We can think of ζ as a stratified vector field whose restriction to
each stratum is a Cr−2-vector field. These restrictions have each a Cr−2- flow defined on each
stratum. For each p = (x, y, t) ∈ U1 × I, let ϑ(p, s) = ϑp(s) denote the flow through p of the
restriction of ζ to the stratum of p. Let ϑp be defined on its maximal interval of existence. Now
we will prove that this flow is continuous, by using the continuous flow in the target to control
the flow in the source.

To this end, consider the vector field η in the target which also can be considered as a
stratified vector field with respect to the stratification {{0} × I,Ω, (V \ {0}) × I \ Ω}. Since η
has a continuous flow on V × I and each flow line lives until it reaches the boundary of V × I,
each flow line stays in its respective stratum and no flow line can have closure points belonging
to lower dimensional strata. From the equation DF ((p, t))ζ(p, t) = η(F (p, t)), we get that the
flow of ζ is mapped to the flow ψ of η. Let p ∈ (U1 −{0})× I. Then the flow line ϑp is mapped
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to the flow line ψF (p) which is a flow line either in Ω or in (V \{0})× I \Ω, and therefore cannot
have a closure point in {0} × I. It follows that ϑp cannot have a closure point in {0} × I either.
By the same sort of arguments it follows that if F (p) ∈ (V \ {0}) × I \ Ω then ϑp cannot have
a closure point in M either. When p ∈ U1 × I \ Σ(F ) and F (p) ∈ Ω, F (ϑp) is a flow line of η
in Ω. It then follows from Lemma 5.2 that ϑp cannot have a closure point in M either. So, for
each p ∈ U × I, each flow line ϑp does not have closure points in lower dimensional strata and
since the component of ζ in the t-direction equals 1, each flow line ϑp can be continued until it
meets the boundary of U1 × I.

Let U ′ be a neighborhood of 0 ∈ R2 such that U
′ ⊂ U1, and let 0 < δ < ε. We will prove

that there exists another neighborhood Ũ ⊂ Ũ ⊂ U ′ such that flow lines of ζ through points in

Ũ × [−δ, 1 + δ] cannot have closure points in (U ′ − U ′)× [−δ, 1 + δ].
Corollary 4.9 implies that there exists ρ > 0 such that B(0, ρ) × [−δ, 1 + δ] ⊂ V1 × I and

F ((U ′ −U ′)× [−δ, 1 + δ]) ⊂ R3 \ (B(0, ρ)× [−δ, 1 + δ]), where B(0, ρ) is the ball around 0 ∈ R2

with radius ρ. Since the flow ψ of η is continuous, we can find ρ1 < ρ such that when (q, t) ∈
B(0, ρ1)× [−δ, 1 + δ] the flow line ψ(q,t)(s) stays in B(0, ρ)× [−δ, 1 + δ] for s ∈ [−δ− t, 1 + δ− t].
By continuity of F , let Ũ ⊂ U ′ be such that F (Ũ × [−δ, 1 + δ]) ⊂ B(0, ρ1)× [−δ, 1 + δ]. Let

(p, t) ∈ Ũ × [−δ, 1 + δ]. Then the flow ϑ(p,t)(s) is mapped to ψF (p,t)(s) and since the latter flow

stays in B(0, ρ)× [−δ, 1 + δ] for s ∈ [−δ− t, 1 + δ− t] and (U ′−U ′)× [−δ, 1 + δ] is mapped to the
complement of B(0, ρ)× [−δ, 1 + δ], the flow ϑ(p,t)(s) can never meet (U ′ −U ′)× [−δ, 1 + δ] but

must stay in U ′ × [−δ, 1 + δ] when s ∈ [−δ − t, 1 + δ − t]. Putting U2 = Ũ the above argument
shows that ζ has a flow ϑ(x, y, t, s) in

Û = {(p, t, s) | (p, t) ∈ U2 × [−δ, 1 + δ], s ∈ [−δ − t, 1 + δ − t]}.

Since U ′ can be chosen arbitrarily small, the argument also shows that this flow is continuous
in {0} × (−δ, 1 + δ).

Since ζ is a Cr−2 vector field in the open set U1 × I − Σ(F ) and we have seen that the flow
stays in this set until it meets the closure of U1 × I the flow is continuous in this set. Especially
the flow ϑ(p, t, s) is continuous when (x, y, t) ∈ U2× (−δ, 1+δ)−Σ(F ) and s ∈ (−δ− t, 1+δ− t).

We will show that by replacing U2 with a smaller neighbourhood U3, we will get a continuous
flow at all points. To this end, let U3 ⊂ U3 ⊂ U2 be a neighborhhood of 0 of R2 such that
when (p, t) ∈ U3 × [−δ, 1 + δ] then ϑ(p,t)(s) ∈ U2 × [−δ, 1 + δ] for s ∈ [−δ − t, 1 + δ − t]. (Such
a neighbourhood exists since we have seen that the flow ϑ is continuous in {0} × (−δ, 1 + δ).)
It remains to see that ϑ is continuous at points (p, t, s) when (p, t) ∈ U3 × (−δ, 1 + δ) ∩ M ,
and s ∈ (−δ − t, 1 + δ − t). Assume this is not the case. Then there exist such (p, t, s) and a
sequence (pn, tn, sn) → (p, t, s) such that ϑ(pn,tn)(sn) 9 ϑ(p,t)(s). Since the restriction of ζ is

Cr−2 on M and the restriction of the flow therefore is continuous there, we must have (pn, tn) ∈
U3× (−δ, 1 + δ) \M . Since the flow lines in U3× [−δ, 1 + δ] stay in U2× [−δ, 1 + δ], the sequence
ϑ(pn,tn)(sn) is contained in the compact subset U2× [−δ, 1+δ] and we may therefore assume that

it converges to some point (p̃, t+s) ∈ U2×[−δ, 1+δ]. Since the flow in the source is mapped to the
flow in the target and the flow in the target is continuous, we get that F (p̃, t+ s) = F (ϑ(p,t)(s)).

Since the flow line ϑ(p,t)(s) is in M and F |Σ(F ) is 1-1, (p̃, t + s) ∈ U2 × (−δ, 1 + δ) \ Σ(F ).

Since the flow ϑ(p′,t)(s) through points (p′, t) in U2× [−δ, 1 + δ] stays in U1× [−δ, 1 + δ] and can
be defined for s ∈ [−δ − t, 1 + δ − t], ϑ(p̃,t+s)(−s) is defined. Since the flow ϑ is continuous on
U1×I\Σ(F ), (pn, tn) = ϑϑ(pn,tn)(sn)(−sn)→ ϑ(p̃,t+s)(−s). This implies that ϑ(p̃,t+s)(−s) = (p, t)

which is impossible since flow lines in U1 × I \ Σ(F ) never meet M . Putting U2 := U3 we thus
get continuity of the flow ϑ in {(p, t, s) | (p, t) ∈ U2 × (−δ, 1 + δ), s ∈ (−δ − t, 1 + δ − t)}. �
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When r > 4, we only need to check continuity of the flow ϑ at points in the t-axis, the
remaining cases we treat above will follow automatically from the lemma below.

Lemma 5.4. If r > 4, then ζ|U0×I is Cr−4.

Proof. Let p = (xp, yp, tp) ∈ M . Then p is a fold point of ωtp , and by Theorem 15A of [15],
there are suitable centered coordinates H around p and K around F (p) such that (u, v, t) =
K ◦F ◦H(x, y, z) = (x, y2, t). If we look closely into the proof of this theorem we find that K can
be chosen to be Cr−1 and H to be Cr−3. We know that both ζ = (ζ1, ζ2, ζ3) and η = (η1, η2, η3)
are tangential on M and Ω respectively, and hence, ζ2(x, 0, t) = η2(u, 0, t) = 0. Thus, since K
is Cr−1 and η is Cr−2, we can, in the new coordinates, write η2(u, v, t) = vη′(u, v, t) for some
Cr−3 function η′. For y 6= 0, we get from the definition of ζ that

DF(x,y,t)ζ(x, y, t) =

1 0 0
0 2y 0
0 0 1

ζ1(x, y, t)
ζ2(x, y, t)
ζ3(x, y, t)

 =

 η1(x, y2, t)
y2η′(x, y2, t)
η3(x, y2, t)

 .

From this relation we see that ζ2(x, y, t) = 1
2yη
′(x, y2, t). Because ζ2(x, 0, t) = 0, we see that

the same equation must hold also for y = 0. Hence we can conclude that ζ is Cr−3 in our new
coordinates around p, and since DH is Cr−4, ζ is Cr−4 in U0 × I where U has been shrinked as
to be contained in F−1(V ). �

Proof of the sufficiency part of Theorem 2.2. Consider the neighborhood V1 of 0 ∈ R2 and the
homeomorphisms kt defined on V1, in the beginning of this section. Let 0 < δ < ε and let U2 be
the neighborhood of 0 given in Lemma 5.3. Since the flow ϑ(p, t, s) of the vector field ζ can be
defined and is continuous for p ∈ U2, t ∈ (−δ, 1 + δ) and s ∈ (−δ − t, 1 + δ − t), we can define
ht : U2 → R2 by the equation (ht(p), t),= ϑ(p, 0)(t). Since the flow is continuous it is clear that
each ht is a homeomorphism onto its image. Since the flow ϑ is mapped by F = (ωt, t) to the
flow ξ in the target, it follows from the definition of kt that ωt(ht(p)) = kt(ω(p)). For t = 1, this
means precisely that ω and ω1 = ω + ω̃ are A0-equivalent. Since ω̃ was arbitrarily chosen, this
means that ω is A0-sufficient. �

6. Realizations of r-jets

Every r-jet has a quite well behaved realization in the sense to be made precise below. If an r-
jet fails to satisfy (I) or (II), then it has another realization with different topological properties.
We use this to prove the necessity part of Theorem 2.2.

6.1. A nice realization of an r-jet. In this section we show that every r-jet has a realization
which has no singular double points and only fold points and regular points outside the origin.
Let ω : (R2, 0)→ (R2, 0) be an r-jet.

Lemma 6.1. There is some finite determined smooth germ f with jrf = ω.

Proof. This is true because for smooth germs (R2, 0) → (R2, 0), finite determinacy holds in
general. See [6] for details. �

Since f is finitely determined, we can assume that f is a polynomial map. Also, the germ f is
stable outside the origin. From the classification of stable germs we conclude that every singular
point of f |U0

is either a fold or a cusp. Moreover the only singular double points occuring are
double points of folds in general positions, which are isolated.

Lemma 6.2. f has no singular double points and only fold points and regular points outside the
origin.
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Proof. Let

C1 = {p ∈ R2 | p is a cusp point }
and let

C2 = {p ∈ Σ(f) | ∃ q ∈ Σ(f), q 6= p with f(p) = f(q)}.
From the Tarski-Seidenberg Theorem it will follow that both C1 and C2 are semialgebraic sets.
Since C1 and C2 also consists of isolated points, they cannot have 0 in their closure. �

6.2. Bad realizations.

Lemma 6.3. If (I) fails for an r-jet ω ∈ Jr(2, 2), then there is a a Cr-germ g with jrg(0) = ω
having a sequence of distinct cusp points converging to the origin.

Proof. If (I) fails for ω, then there is a sequence (xn) converging to 0 and a sequence (Ln, Hn) ∈ Γ
such that

‖Ln − Lω(xn)‖+ ‖Hn −Hω(xn)‖ ‖xn‖ = o(‖xn‖r−1
).

Define a Taylor field Q on S = {0}∪ (
⋃
n{xn}) with values in R2 by Qm(0) = 0 for all m and

Qm(xn) =


0, m = 0,

Lmn − Lmω (xn), |m| = 1,

Hm
n −Hm

ω (xn), |m| = 2,

0, |m| ≥ 3.

This notation requires some explanation. For instance, let ω = (f, g) and

(Ln, Hn) = (an, bn, . . . , jn).

Then

Q(1,0)(xn) =
(
an −

∂f

∂x
(xn), cn −

∂g

∂x
(xn)

)
Q(0,1)(xn) =

(
bn −

∂f

∂y
(xn), dn −

∂g

∂y
(xn)

)
Q(2,0)(xn) =

(
2en −

∂2f

∂x2
(xn), 2hn −

∂2g

∂x2
(xn)

)
etc. Assuming ‖xn+1‖ < 1

2 ‖xn‖, it is straight forward to verify that Q is a Cr-Whitney field.
Therefore we can find a Cr map extending Q. Let h be one such map. Then jrh(0) = 0 and
also

(6.1) (Lω+h(xn), Hω+h(xn)) = (Ln, Hn).

By construction, j2(ω + h)(xn) ∈ Γ.
Now it is not hard to see that the set of 2-jets in Γ which are transverse to Σ1 is a dense

subset. Recall that whether or not a point is a cusp point is determined by the 3-jet at that
point. It is not hard to see that in the set of 3-jets with a given 2-jet in Γ transverse to Σ1

the subset of 3-jets which are cusps is a dense subset. Therefore we can always suppose that
j2(ω + h)(xn) ∈ Γ is transverse to Σ1, and by perturbing the 3-jet if necessary, we can suppose
the j3(ω + h)(xn) are cusps for all n.

(If ω + h has singularities appearing along (xn) besides simple cusps, then one can define a
new Whitney field providing a Cr perturbation h′ (in fact h′ can be taken to be smooth) with
jrh′(0) = 0 and j2h′(xn) = 0 such that ω+h+h′ has only cusps along (xn). Then g = ω+h+h′

is the desired realization of ω.) �
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Lemma 6.4. Assume ω ∈ Jr(2, 2) satisfies condition (I), but assume condition (II) fails. Also
assume that Σ(ω)−{0} has N connected components C1, . . . , CN with 0 in their closure all with
distinct oriented tangent directions at 0. Then there is a Cr-germ g with jrg(0) = ω having a
sequence of singular double points converging to the origin.

Proof. Assume that (II) fails for ω and let the sets Hi and Hε be defined as before. Then we can
find a sequence εn → 0 and sequences of points (xn) and (yn), both converging to 0 ∈ R2, with
each xn ∈ Hi ∪ {0} and yn ∈ Hj ∪ {0} i 6= j where Hi and Hj are components of Hεn −{0}such
that (II) fails for {xn, yn}. Assume first that xn 6= 0 and yn 6= 0. Then

(6.2) d(j1ω(wn),Σ) = o(‖wn‖r−1
),

for wn = xn, yn and

(6.3) ‖ω(xn)− ω(yn)‖ = o
(
(‖xn‖r−1

+ ‖yn‖r−1
) ‖xn − yn‖

)
.

Then, since d(j1ω(xn),Σ) = o(‖xn‖r−1
), using an argument with The Whitney Extension

Theorem (similar to the one given in the proof of Lemma 6.3), we can find a representative
ω̂ such that ω̂ has singular points along the sequence {xn}. By the results of Subsection 4.2,
we can find a homeomorphism h mapping Σ(ω) to Σ(ω̂) and therefore points pn ∈ Ci such
that h(pn) = xn, and by Lemma 4.5, we get that ‖pn − xn‖ = o(‖pn‖). By the same sort
of argument, there is a point qn ∈ Cj with ‖qn − yn‖ = o(‖qn‖). We may also assume that
‖xn‖ ≥ ‖yn‖ and ‖xn+1‖ < 1

2 ‖yn‖. Notice that because our assumption of the tangent directions
of the components C1, . . . CN and the estimates above, there exists δ > 0 such that for all n,
‖xn − yn‖ > δ ‖xn‖.

Let K = {0}
⋃
n{xn, yn}. For each p ∈ K, let S(p) be the singular matrix closest to Dω(p)

in J1(2, 2) and let M(p) = S(p) − Dω(p). It follows from equation (6.2) that ‖M(wn)‖ =

o(‖wn‖r−1
) for wn = xn, yn. Define a r-th order Taylor field Q on K with values in R2 by

Qm(p) =



0, p = 0

0, p = yn,m = 0

ω(yn)− ω(xn), p = xn,m = 0

Mm(p), |m| = 1

0, |m| ≥ 2

.

Arguments similar to the arguments in [4] show that Q is a Whitney field on K.
Let h be a Cr extension of Q to R2 and let g = ω + h. Since jrh(0) = 0, g is a realization

of ω. For p ∈ K, Dg(p) = Dω(p) + Dh(p) = S(p), so all points of K are singular points. Also
g(yn) = ω(yn) + h(yn) = ω(yn) and g(xn) = ω(xn) + h(xn) = ω(xn) +ω(yn)−ω(xn) = ω(yn) =
g(yn), so (xn) and (yn) are sequences of singular double points converging to zero. If say yn = 0
for all n we can use the same Whitney field and we obtain a representative of ω with singular
zero-points all along the sequence {xn}.

�

Lemma 6.5. If f and g has only regular points and folds outside the origin and there are
homeomorhpisms H and K such that g = K ◦ f ◦H then Σ(g) = H−1(Σ(f)).

Proof. This is clear since regular points and fold points are topologically distinct. �

Lemma 6.6. If r > 2 and f ∈ E[r](2, 2) is a cusp, then f is topologically different from regular
germs and fold germs.
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Proof. Since f has fold singularities close to the origin, f is clearly topologically different from
regular germs. To see that f is topologically different from fold germs, notice that the normal
form of a fold implies that the image of a neighbourhood of a fold is not a neighbourhood of its
target point. We prove that f maps every neighbourhood of 0 to a neighbourhood of 0. This
is easily seen from the normal form of a cusp, but to be able to write f in this form, f has to
have a considerable degree of differentiability (see [15]). Consider j3f(0) as a polynomial map

P (x, y). Then f(x, y) = P (x, y) + o(‖(x, y)‖3). Since P (x, y) is a cusp, we may change smooth

coordinates and write f(x, y) = (x, xy + y3) + o(‖(x, y)‖3). Example 7.2 in Section 7 below
shows that (x, xy + y3) is A0-sufficient in E[3](2, 2), and hence, f is topologically equivalent to

(x, xy + y3). The conclusion follows. �

Proof of the necessity part of Theorem 2.2. Assume that ω ∈ Jr(2, 2) does not satisfy (I). Let
(xn) be the sequence in the proof of Lemma 6.3. Let f be a nice realization of ω in the sense of
Section 6.1 , and let g be the bad realization of Lemma 6.3.

Suppose the germs at 0 of f and g are A0-equivalent germs. Then we can find germs at 0 of
homeomorphisms H and K such that g = K ◦ f ◦H. Let U be a neighbourhood of 0 in which g
and K ◦ f ◦H coincide and choose U so small that f has only fold points and regular points in
U0. Choose N so large that xN ∈ U . Then the germ of g at xN and the germ of f at H(xN ) are
topologically equivalent. This will however contradict the conclusion of Lemma 6.6, since xN is
a cusp point of g and H(xN ) is either a fold point of f or a regular point of f .

Next, assume that (I) holds and (II) fails for ω, and assume that the oriented tangent directions
of the components C1, . . . CN of Σ(ω) \ {0} are all distinct. Let f be as above, but let g be the
realization of Lemma 6.4. Suppose there exist germs of homeomorphisms H : (R2, 0)→ (R2, 0)
and K : (R2, 0) → (R2, 0) such that f ◦ H = K ◦ g and let U be a neighbourhood of 0 where
representatives of the germs are equal. If necessary, choose a smaller U such that f has no singular
double points in U . We can find n large enough to ensure that both xn and yn are contained in
U . According to Lemma 6.5, H maps Σ(g) into Σ(f). We have that K ◦ g(xn) = K ◦ g(yn) but
f ◦ H(xn) 6= f ◦ H(yn) because otherwise H(xn) and H(yn) would be singular double points.
This contradiction finishes the proof. �

7. Examples

Before we give examples of the use of Theorem 2.2, we prove a proposition which is helpful
when trying to verify that a jet is sufficient. To understand where the inequality in the next
proposition comes from, recall the expression from Section 3.2 measuring the distance from
(L,H) ∈ J2(2, 2) with L singular to the set { (J,K) ∈ J2(2, 2) | J = L, (J,K) ∈ Γ }.

Proposition 7.1. Let ω ∈ Jr(2, 2). Then the Lojasiewicz inequality (I) is implied by the fol-
lowing Lojasiewicz inequality:

There is a neighbourhood U of 0 in R2 and a real number C > 0 such that for all p ∈ U ,

(III)

∥∥∥∥Dω(p)

( ∂
∂yJω(p)

− ∂
∂xJω(p)

)∥∥∥∥ ≥ C ‖p‖r−2
.

Proof. Assume that (III) holds for an r-jet ω and that there is a sequence (Ln, Hn) ∈ Γ and a
sequence (pn) of points converging to zero in R2 such that (I) does not hold, that is

(7.1) ‖Lω(pn)− Ln‖+ ‖Hω(pn)−Hn‖ ‖pn‖ = o(‖pn‖r−1
).
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Let us introduce some notation. Let

(Lω(pn), Hω(pn)) = (a(pn), b(pn), . . . , j(pn))

and let
(Ln, Hn) = (an, bn, . . . , jn).

Finally define (a′n, . . . , j
′
n) by a′n = a(pn)− an, b′n = b(pn)− pn, etc. It is easily seen from (7.1)

that
‖(a′n, . . . , j′n)‖ = o(‖pn‖r−2

).

Now, because (Ln, Hn) ∈ Γ,(
an bn
cn dn

)(
anjn − bnin − cngn + fndn
−anin + bnhn + cnfn − dnen

)
=

(
0
0

)
.

By writing a(pn) = an + a′n etc., it is clear that∥∥∥∥(a(pn) b(pn)
c(pn) d(pn)

)(
a(pn)j(pn)− b(pn)i(pn)− c(pn)g(pn) + f(pn)d(pn)
−a(pn)i(pn) + b(pn)h(pn) + c(pn)f(pn)− d(pn)e(pn)

)∥∥∥∥
=

∥∥∥∥(an bn
cn dn

)(
anjn − bnin − cngn + fndn
−anin + bnhn + cnfn − dnen

)
+

(
A
B

)∥∥∥∥ = o(‖pn‖r−2
)

because each term of A and B contains at least one primed factor. But (III) implies that∥∥∥∥(a(pn) b(pn)
c(pn) d(pn)

)(
a(pn)j(pn)− b(pn)i(pn)− c(pn)g(pn) + f(pn)d(pn)
−a(pn)i(pn) + b(pn)h(pn) + c(pn)f(pn)− d(pn)e(pn)

)∥∥∥∥
≥ C ‖pn‖r−2

so we arrive at a contradiction. Thus (I) must hold and the proof is finished. �

Example 7.2. Let ω(x, y) = (x , xy+ yk ) for some integer k > 2. For k = 3 this is the normal
form of a cusp. We want to show that ω is A0-sufficient in E[k](2, 2). A computation gives the
following.

Dω(x, y) =

(
1 0
y x+ kyk−1

)
and

Jω(x, y) = x+ kyk−1.

It is clear that the singular set is a single curve tangent to the y-axis at the origin. So, C1 =
{x+kyk−1 = 0

∣∣ y > 0} and C2 = {x+kyk−1 = 0
∣∣ y < 0} are the two components of Σ(ω)−{0}.

After some computation, we get that close to the origin we have∥∥∥∥Dω(x, y)

( ∂
∂yJω(x, y)

− ∂
∂xJω(x, y)

)∥∥∥∥ =

∥∥∥∥( k(k − 1)yk−2

−x+ (k2 − 2k)yk−1

)∥∥∥∥ ≥ ‖(x, y)‖k−2
.

Hence, ω satisfies (III). By proposition 7.1, ω satisfies (I).
It is more cumbersome to verify (II). Notice that if (x, y) is close enough to the origin and

ε > 0 is sufficiently small, then by (3.2) of Subsection 3.1

Hε = { (x, y) | d(j1ω(x, y),Σ) ≤ ε ‖(x, y)‖k−1 }

⊂ { (x, y) | |Jω(x, y)| ≤ (2 +
√

2)ε

2
‖Dω(x, y)‖ ‖(x, y)‖k−1 }

⊂ { (x, y) | |x+ kyk−1| ≤ (2 +
√

2)ε|y|k−1 } =: H∗ε .

Let
H± = H∗ε ∩ { (x, y) | y ≷ 0 }
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be the two components of H∗ε \ {0}. It is enough to verify (II) for pairs of points in H± ∪{0}. It
is clear from above that if (xn, yn) is a sequence in H∗ε converging to 0, then 2k|yn|k−1 > |xn| >
k
2 |yn|

k−1 provided ε > 0 is sufficiently small.
If k is an even number and p = (x, y) ∈ H+ and q = (x′, y′) ∈ H−, then x and x′ have

opposite signs and the first component of ω becomes dominating and

‖ω(p)− ω(q)‖ =
∥∥(x− x′ , xy + yk − x′y′ − y′k )

∥∥
≥ |x− x′|
= |x|+ |x′|

≥ k

2
(|y|k−1 + |y′|k−1)

≥ (‖p‖k−1
+ ‖q‖k−1

)

≥ (‖p‖k−1
+ ‖q‖k−1

) ‖p− q‖

as long as ‖p‖, ‖q‖ and ε are chosen small enough. The same estimate is valid if either p = (0, 0)
or q = (0, 0).

If k is odd, then p = (x, y) ∈ H+ and q = (x′, y′) ∈ H− may have nearly equal first compo-
nents, but in this case ω separates these points in the second component if the first components
are getting very close. We have

‖ω(p)− ω(q)‖ =
∥∥(x− x′ , xy + yk − x′y′ − y′k )

∥∥
≥ |xy − x′y′| − |yk − y′k| = |xy|+ |x′y′| − |y|k − |y′|k

≥ (
k

2
− 1)(|y|k + |y′|k)

≥ C(‖p‖k + ‖q‖k)

for some C > 0 as long as ‖p‖, ‖q‖ and ε are chosen small enough. If ‖p‖ ≥ ‖q‖ ≥ 1/2 ‖p‖, then

‖p‖k + ‖q‖k ≥ (‖p‖k−1
+ ‖q‖k−1

) ‖q‖ ≥ 1

4
(‖p‖k−1

+ ‖q‖k−1
) ‖p− q‖ ,

and if ‖q‖ ≤ 1/2 ‖p‖, then

‖p‖k + ‖q‖k ≥ ‖p‖k ≥ 1

2
‖p‖k−1 ‖p− q‖ ≥ 1

4
(‖p‖k−1

+ ‖q‖k−1
) ‖p− q‖ .

This shows that ω is A0-sufficient in E[k](2, 2) for every integer k ≥ 3.

Example 7.3. Let ω(x, y) = (xy2 − 1
3x

3 , y2 ). We find

Dω(x, y) =

(
y2 − x2 2xy

0 2y

)
,

and

Jω(x, y) = 2y(y2 − x2).

Since Σ(ω) consists of the lines y = 0, y = x and y = −x, the 6 components of Σ(ω)− {0} has
different tangent directions. But since ω(x, x) = ω(x,−x), (II) of Theorem 2.2 does not hold for
any r. So ω ∈ Jr(2, 2) is not sufficient in E[r](2, 2) for any r.

Example 7.4. Let ω(x, y) = (xy2 − 1
3x

3 , y2 + y3 ). We find

Dω(x, y) =

(
y2 − x2 2xy

0 2y + 3y2

)
,
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and

Jω(x, y) = y(2 + 3y)(y2 − x2).

Since the germ of Σ(ω) at 0 consists of the lines y = 0, y = x and y = −x, Σ(ω) − {0} has 6
components which have different tangent directions at the origin. Consider p = p(t) = (t, t) and
q = q(t) = (t+ t2,−t− t2). p and q are singular points from different components of Σ(ω)−{0}.
We find ‖ω(p(t))− ω(q(t))‖ ∼ |t|4 = o(|t|3) = o(‖p(t)− q(t)‖ (‖p(t)‖2 + ‖q(t)‖2)). This shows
that (II) of Theorem 2.2 does not hold when r = 3, so ω is not sufficient in E[3](2, 2). However,

regarding ω as a jet in J4(2, 2), we will show that (I) of Proposition 2.1 and (II) of Theorem 2.2
will hold when r = 4, so ω will be sufficient as a 4-jet among C4-realizations.

Let pn = (xn, yn) be a sequence converging to (0, 0), and assume that pn ∈ Hε for any ε > 0

when n is large. Then it follows from (3.3) of Subsection 3.1 that |Jω(pn)|
‖Dω(pn)‖ = o(‖pn‖3). It is

enough to consider the following two cases.

Case 1; yn = o(|xn|). Then ‖pn‖ ∼ |xn|, |Jω(pn)| ∼ |yn|x2
n, so |yn|

‖Dω(pn)‖ = o(|xn|). Since

‖Dω(pn)‖ ∼ max{x2
n, |yn|}, we must have ‖Dω(pn)‖ ∼ x2

n and therefore yn = o( |xn|3).
Case 2; There exists ε such that |yn| ≥ ε|xn| for all n. Then we get that ‖Dω(pn)‖ ∼ |yn| and
therefore

|Jω(pn)|
‖Dω(pn)‖

∼ |yn| |y
2
n − x2

n|
|yn|

= |y2
n − x2

n| = o(‖pn‖3).

This will imply that |yn| ∼ |xn|, ‖pn‖ ∼ |xn| and yn = ±xn + o(|xn|2).
We will now prove that (I) of Proposition 2.1 will hold when r = 4. Assume this is not the

case. Then there exist a sequence (pn) in R2, pn → 0, and a sequence (Ln, Hn) ∈ Γ such that

‖Lω(pn)− Ln‖+ ‖Hω(pn)−Hn‖ ‖pn‖ = o(‖pn‖3). Since

‖Lω(pn)− Ln‖ ≥ d(Dω(pn),Σ) ∼ Jω(pn)

‖Dω(pn)‖
,

we must have |Jω(pn)|
‖Dω(pn)‖ = o(‖pn‖3), and from above it follows that we can assume that either

yn = o(|xn|3) or yn = ±xn + o(|xn|2). Let Ln =

(
an bn
cn dn

)
, and put L̃n = Ln − Lω(pn) =

Ln −Dω(pn). Then
∥∥∥L̃n∥∥∥ = o(‖pn‖3). Write

Hω(pn) = (e(pn), f(pn), g(pn), h(pn), i(pn), j(pn))

= (−xn, yn, xn, 0, 0, 1 + 3yn).

Moreover, let Cn = 1
2

( ∂
∂yJω(pn)

− ∂
∂xJω(pn)

)
and let

C̄n =

(
an j(pn)− bn i(pn)− cn g(pn) + dn f(pn)
−an i(pn) + bn h(pn) + cn f(pn)− dn e(pn)

)
.

Let C̃n = C̄n − Cn. Let zn = (Ln, Hω(pn)) ∈ J2(2, 2) and let En = Ezn be the linear subspace
of J2(2, 2) defined in Subsection 3.2. By the estimate (3.9) in Subsection (3.2) we get

(7.2)

o(‖pn‖2) = ‖Hω(pn)−Hn‖ = ‖(Ln, Hω(pn))− (Ln, Hn)‖

≥ d((Ln, Hω(pn)), En) ∼
∥∥Ln(C̄n)

∥∥
‖Ln‖2

.

We can write

Ln(C̄n) = Dω(pn)(Cn) + L̃n(Cn) +Dω(pn)(C̃n) + L̃n(C̃n).
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Assume first that yn = o(|xn|3). Then ‖Dω(pn)(Cn)‖ ∼ x4
n and

∥∥∥L̃n(Cn)
∥∥∥ = o(|xn|5). Moreover

C̃n =

(
o(|xn|3)
o(x4

n)

)
and this implies that

∥∥∥Dω(pn)(C̃n)
∥∥∥ = o(|xn|5) and

∥∥∥L̃n(C̃n)
∥∥∥ = o(x6

n).

Altogether this implies that
∥∥Ln(C̄n)

∥∥ ∼ x4
n. Moreover ‖Ln‖ ∼ ‖Dω(pn)‖ ∼ x2

n, so we get that
‖Ln(C̄n)‖
‖Ln‖2

∼ |xn|0 which contradicts (7.2).

Assume now that yn = ±xn + o(x2
n). In this case ‖Dω(pn)(Cn)‖ ∼ |xn|3,

∥∥∥L̃n(Cn)
∥∥∥ =

o(|xn|5),
∥∥∥Dω(pn)(C̃n)

∥∥∥ = o(|xn|5) and
∥∥∥L̃n(C̃n)

∥∥∥ = o(x6
n). From this we get

∥∥Ln(C̄n)
∥∥ ∼ |xn|3.

Furthermore ‖Ln‖ ∼ ‖Dω(pn)‖ ∼ |xn| so we get that
‖Ln(C̄n)‖
‖Ln‖2

∼ |xn|. Since ‖pn‖ ∼ |xn| this

again contradicts (7.2). Therefore we cannot find a sequence (Ln, Hn) contradicting inequality
(I), and (I) must therefore hold when r = 4.

Now let us assume that inequality (II) does not hold . Then there must exist sequences
pn = (xn, yn) and qn = (un, vn) such that pn, qn ∈ Hε for any ε > 0 when n is large, pn ∈ Hi

and qn ∈ Hj with i 6= j and ‖ω(pn)− ω(qn)‖ = o(‖pn − qn‖ (‖pn‖3 +‖qn‖3)) = o(‖pn‖4 +‖qn‖4).
(Note that it will follow from what we have shown above that ‖pn − qn‖ ∼ (‖pn‖+ ‖qn‖) when
pn ∈ Hi, qn ∈ Hj and i 6= j. This also follows from Lemma 4.5 and the proof of Lemma 6.4).
Since we may assume that pn and qn satisfy Case 1 or Case 2 above, we have to consider several
subcases. Assume first yn = ±xn + o(|xn|2) and vn = ±un + o(|un|2) and xn and un have
different signs. Then

|(xny2
n −

1

3
x3
n)− (unv

2
n −

1

3
u3
n)| = 2

3
|xn|3 +

2

3
|un|3 + o(|xn|4) + o(|un|4) ∼ ‖pn‖3 + ‖qn‖3 .

So we cannot have such a pair of sequences violating (II). The case yn = ±xn + o(|xn|2) and
vn = o(|un|3) where xn and un have the same sign, can be treated in a similar manner and we
get the same conclusion. Consider the case yn = ±xn + o(|xn|2) and vn = o(|un|3) where xn
and un have opposite signs. Then

|(xny2
n −

1

3
x3
n)− (unv

2
n −

1

3
u3
n)| = |2

3
x3
n +

1

3
u3
n|+ o(|xn|4) + o(|un|7).

If |un| > 2|xn| the right hand side of the equation above is dominated by the term | 23 x
3
n+ 1

3 u
3
n| ∼

1
3 |un|

3 ∼ ‖pn‖3 + ‖qn‖3. If |un| ≤ 2|xn| then vn = o(|xn|3) = o(|yn|3). This implies that.

|(y2
n + y3

n)− (v2
n + v3

n)| ∼ |yn|2 ∼ ‖pn‖2 + ‖qn‖2 .
Therefore we cannot find sequences contradicting (II) in this case either.

The next case is |yn| = o(|xn|3) and |vn| = o(|un|3). Then it is clear that such pn, qn
must belong to components Hi and Hj containing the positive and negative part of the x-axis
respectively, and xn and un must consequently have different signs. Then

|(xny2
n −

1

3
x3
n)− (unv

2
n −

1

3
u3
n)| = 1

3
|xn|3 +

1

3
|un|3 + o(|xn|7) + o(|un|7) ∼ ‖pn‖3 + ‖qn‖3 .

Thus, (II) cannot fail along such sequences.
The only case left is when yn = ±xn + o(|xn|2) and vn = ±un + o(|un|2) and xn and un have

the same sign. Since pn and qn belong to different Hi’s, yn and vn must have opposite signs. We
may assume that xn, un, yn > 0 and vn < 0. So xn = yn + o(|yn|2) and un = −vn + o(|vn|2).
Assume that

‖ω(pn)− ω(qn)‖ = o(‖pn‖4 + ‖qn‖4) = o(|yn|4 + |vn|4).

Let p̃n = (yn, yn) and q̃n = (−vn, vn). Then

‖ω(pn)− ω(p̃n)‖ = o(|yn|4) and ‖ω(qn)− ω(q̃n)‖ = o(|vn|4).
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This implies that,

‖ω(p̃n)− ω(q̃n)‖ ∼ |2
3
y3
n +

2

3
v3
n|+ |y2

n + y3
n − v2

n − v3
n| = o(|yn|4 + |vn|4).

So we get that

|y2
n + y3

n − v2
n − v3

n| = |yn − vn| |yn + vn + y2
n + yn vn + v2

n| = o(|yn|4 + |vn|4).

Then since yn and vn have opposite signs, |yn − vn| ∼ |yn|+ |vn|, and we get

|yn + vn + y2
n + yn vn + v2

n| = o(|yn|3 + |vn|3).

But since |y2
n+ yn vn+ v2

n| ∼ |yn|2 + |vn|2 we must then have that |yn+ vn| ∼ |yn|2 + |vn|2. This
will imply that

|2
3
y3
n +

2

3
v3
n| =

2

3
|yn + vn| |y2

n − ynvn + v2
n| ∼ (|yn|4 + |vn|4)

which gives a contradiction. This proves that in any case, we cannot find a pair of sequences
(pn) and (qn) violating (II). So (II) must hold when r = 4. We conclude that ω satisfies the
hypothesis of Theorem 2.2 and hence is sufficient for r = 4.

8. Topological trivialization of 1-parameter families of germs

So far we have studied the perturbation of an r-jet z by an arbitrary Cr mapping h with
jrh(0) = 0. In particular, we have studied the 1-parameter family of Cr map-germs z + th. In
this section we deal with a somewhat different problem. We are going to consider Cr 1-parameter
families αt = (ft, gt) of Cr map-germs αt : (R2, 0)→ (R2, 0). By this we mean that there exists
a Cr map F : U × I → R3 given by F (p, t) = (βt(p), t) such that each βt is a representative of
the germ αt. (We call such F a representative of the family.) The techniques we have developed
in the earlier sections can be used to give some sufficient conditions to decide that such a 1-
parameter family of germs can be topological trivialized, i.e. there are 1-parameter families of
homeomorphisms Ht and Kt such that αt ◦Ht = Kt ◦ α0.

Proposition 8.1. Let r > 2 and let αt = (ft, gt) : (R2, 0)→ (R2, 0) be a Cr 1-parameter family
of Cr germs from the R2 to R2. The following conditions are sufficient for αt to be topologically
trivializable:

There exists a representative F : U×I → R3, F (p, t) = (βt(p), t) having the following properties.

(1) Each βt|U0
has only fold singularities ( recall that U0 = U − { 0} .)

(2) F |Σ(F ) is 1-1.
(3) ‖βt(p)‖ > 0 for (p, t) ∈ U0 × I.
(4)

∥∥∂F
∂t (p, t)− (0, 0, 1)

∥∥ = o(‖βt(p)‖) as p→ 0.

Proof. The proof of this proposition is very similar to the proof of the sufficiency part of Theorem
2.2. We will therefore only sketch this proof refering to the relevant details of that proof.
Property 1 above ensures that M = Σ(F0) is a Cr−1 submanifold of R3 and that F |Σ(F0) is

an immersion. Together with property 2 this also makes N = F (M) a Cr−1 submanifold,
completely analogous to Lemma 4.13. Now we can define a vector field w on N by

w(F (p, t)) = DF(p,t)

(
0
1

)
=

(
∂αt
∂t
1

)
which will be tangent to N because F has rank 2 at every point of M . Also define w(0, 0, t) =
(0, 0, 1). This gives a vector field on all of F (Σ(F )). Property 4 guarantees us that w satisfies
Kuo’s condition. Indeed, the situation is exactly the same as for the vector field u on Ω in
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Section 5. Recall the technique we used to extend u to all of the target. We can use the same
technique to extend w to a vector field µ defined on some open neighbourhoodV × I of {0} × I
in the target, and as in Lemma 5.1 we get

‖µ(q, t)− k‖ = o(‖q‖).
Thus we can integrate µ and get a continuous flow θ(q, t) defined on V × I. The vector field µ
is Cr−2 outside the t-axis, just like the vector fields η and ζ of earlier sections.

The next step is to define a corresponding vector field ν on the source. This is defined to
be the unique vector field whose restriction to M is a tangent vector field and which is mapped
onto µ under DF . We can now use the same arguments as in the proof of Lemma 5.3 to see that

ν has a continuous flow. Let U ′ be a neighborhood of 0 in the source such that U ′ ⊂ U
′ ⊂ U .

Then property 4 give us that if J is a compact interval with J ⊂ I, then F (U
′ − U ′) × J is

bounded away from {0} × I. Using this we can use the continuous flow θ(q, t) in the target to
control the flow in the source, and we can argue exactly as in Lemma 5.3 to obtain the existence
and continuity of the flow of ν. The flows of µ and ν induce the required homeomorphisms, and
the proof is finished. �
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