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CHOW GROUPS AND TUBULAR NEIGHBOURHOODS

HELMUT A. HAMM

Abstract. We will prove theorems of Zariski-Lefschetz type for the analytic Chow groups of

a quasi-projective variety. We will also derive an algebraic analogue, using formal instead of

tubular neighbourhoods.

I. In this paper we will look at the algebraic and analytic Chow groups for complex quasi-
projective varieties.

First, let X be a scheme over C of finite type, k ≥ 0. Then the k-th Chow group Ak(X)
is defined as follows: Ak(X) := Ck(X)/Zk(X). Here Ck(X) is the group of k-cycles in X, i.e.
the free abelian group of formal Z-linear combinations of k-dimensional algebraic subvarieties
(i.e. closed non-empty reduced and irreducible subschemes) of X, and Zk(X) is the subspace of
Z-linear combinations of elements of the form div f , where f ∈M(D)∗, D a (k+ 1)-dimensional
algebraic subvariety of X. Note thatM(D) is the field of rational functions on D and div f the
divisor of f .

See [Fu] I.1.3, where Ak(X) is called the group of k-cycles modulo rational equivalence. It
is reasonable to speak of “Chow groups” because ⊕kAk(X) is called “Chow ring” in the non-
singular case where we have a ring structure indeed.

If X is everywhere of dimension n we have that An−1(X) = Cl(X) := Weil divisor class group
= group of Weil divisors modulo principal divisors.

We can define analytic Chow groups, too, for a complex space. However, in the analytic con-
text Ck(X) is defined using locally finite linear combinations instead of finite linear combinations,
and Zk(X) consist of elements

∑
i

div fi, where (Di)i∈I is a locally finite set of (k+1)-dimensional

analytic subvarieties of X and fi is a non-zero meromorphic function on Di.
Note that this is not the same definition as in [V] but it is at least reasonable in the

following sense: If the complex space X is everywhere of dimension n we have again that
An−1(X) = Cl(X) := Weil divisor class group.

From now on let X be a closed subscheme of PN (C), Y a Zariski-closed subspace of X, and
H a hyperplane. The complex space associated to X will be denoted by Xan. We assume that
X is reduced because this is not an essential restriction.

A Lefschetz type theorem for the Chow groups should compare those of X \Y and X ∩H \Y .
But looking for such a theorem seems to be very difficult. A considerable simplification is ob-
tained in the analytic context if one replaces the hyperplane section by some neighbourhood
(“Zariski-Lefschetz type theorem”). There are two possibilities: first, one can take a fundamen-
tal system of neighbourhoods V of Xan ∩Han \ Y an in Xan \ Y an and compare Ak(Xan \ Y an)
with Ak(V ), or one can take a fundamental system of neighbourhoods U of Xan ∩Han in Xan

and compare Ak(Xan \ Y an) with Ak(U \ Y an). Note that the neighbourhoods U \ Y an of
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Xan ∩Han \ Y an are big compared with V .

The second alternative has already been studied in [H1] in the special case of the Weil divisor
class group: If dim X ≥ 3 everywhere we have Cl(Xan \ Y an) ' Cl(U \ Y an) for some funda-
mental system of neighbourhoods U of Xan ∩Han in Xan, see [H1] Theorem 1.2.

II. The analogue of tubular neighbourhoods in the algebraic context is given by formal com-
pletion. Let X̂ be the formal completion of X along X ∩ H, see [GD] I §10. Then the formal

completion of X \ Y along X ∩H \ Y is given by X̂ \ Ŷ . This is the algebraic analogue of the
neighbourhoods V above (in the limit).

This approach in the algebraic context goes back to A.Grothendieck when he studied the
Picard group. In fact Grothendieck has proved in [G] a Lefschetz theorem for the Picard group
Pic(X \Y ) in the case Y = ∅. This has been generalized in [HL2]. The case where Y is arbitrary
has been studied in [HL1] (smooth case) and [HL3] (general case).

Note that Pic(X \ Y ) ' Cl(X \ Y ) if X \ Y is smooth. This could be used in order to derive
a Lefschetz theorem for the Weil divisor class group, see [HL1] Theorem 1.5: If dim X ≥ 4
everywhere, codimSing X ≥ 2 and H is generic we have that Cl(X) ' Cl(X ∩H).

When working with formal neighbourhoods we have to make precise what we mean by the
dimension: If Ẑ is a closed formal subscheme of PN (C) \ Y , dim Ẑ ≥ k everywhere if for all

closed points z of Ẑ and all associated prime ideals p of OẐ,z we have dim OẐ,z/p ≥ k.

Furthermore, a closed formal subscheme Ẑ of X̂ is called reducible if there are proper formal
closed subschemes such that Ẑ = Ẑ1 ∪ Ẑ2, where J1 · J2 = 0 for the ideal sheaves J1,J2 of Ẑ1,
Ẑ2 in Ẑ. Otherwise, Ẑ is called irreducible, of course.

Note that if Z is a subscheme of PN (C)\Y of pure dimension k, Z∩H 6= ∅, we have dim Ẑ = k,
too.

What is the algebraic analogue of neighbourhoods of the form U \ Y an? It is easier to
give a direct definition of the corresponding Chow group than to define an analogue of the
space itself. Let us start from a different description of Ak(X \ Y ) in the algebraic case: we
have Ak(X \ Y ) ' Ak(X,Y ) := Ck(X)/(Zk(X) + Ck(Y )). The notation might be misleading:
obviously we still have an arrow Ak(X)→ Ak(X,Y ).

Note that Ak(X,Y ) ' Ck(X,Y )/Zk(X,Y ) with Ck(X,Y ) := Ck(X)/Ck(Y ) and Zk(X,Y ) =
Zk(X)/Zk(X)∩Ck(Y ) ' (Zk(X)+Ck(Y ))/Ck(Y ), by the isomorphism theorems of group theory.

Then it is natural to define Ak(X̂, Ŷ ) with X̂, Ŷ instead of X,Y . Now Ak(X̂, Ŷ ) seems to be
the appropriate algebraic analogue of lim

→
Ak(U \ Y an), as we will see from the results.

We have an analogous notion Ak(Xan, Y an) in the analytic context which does not, however,
coincide necessarily with Ak(Xan \Y an) in general because analytic subsets of Xan \Y an do not
necessarily extend to analytic subsets of Xan.

III. Now we have all types of Chow groups which we will use at our disposal and can phrase
our theorems. As often define dim ∅ := −1.

In the analytic context we have:

Theorem 1: The mapping Ak(Xan \Y an)→ lim
→
Ak(U \Y an) is bijective if k ≥ 2 and injective

if k ≥ 1.
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Here U runs through the set of open neighbourhoods of Xan ∩Han in Xan.

Theorem 1’: The mapping Ak(Xan, Y an) → lim
→
Ak(U,U ∩ Y an) is bijective if k ≥ 2 and

injective if k ≥ 1.
Again, U runs through the set of open neighbourhoods of Xan ∩Han in Xan.

Theorem 2: The mappings Ak(Xan \ Y an) → lim
→
Ak(U \ Y an) → lim

→
Ak(V ) are bijective if

k ≥ dim (Y ∩H) + 3 and injective if k ≥ dim (Y ∩H) + 2.
Here U (resp. V ) runs through the set of all open neighbourhoods of Xan∩Han in Xan (resp.

of Xan ∩Han \ Y an in Xan \ Y an).

Similarly, in the algebraic context we obtain:

Theorem 3: The mapping Ak(X \ Y )→ Ak(X̂, Ŷ ) is bijective if k ≥ 2 and injective if k ≥ 1.

Theorem 4: The mappings Ak(X \ Y ) → Ak(X̂, Ŷ ) → Ak(X̂ \ Ŷ ) are bijective if k ≥
dim (Y ∩H) + 3 and injective if k ≥ dim (Y ∩H) + 2.

Remark: In the case Y = ∅ Theorem 1, 1’ and 2 coincide, the same holds for Theorem 3 and 4.

Finally we will compare the algebraic and analytic context, this will make it possible, in par-
ticular, to make Theorem 1’ more precise. See Remark 3.1 below.

From the literature to be used it is evident that the results in the algebraic context go over
to the case of an arbitrary algebraically closed field instead of C.

1. Analytic context: Proof of Theorem 1, 1’ and 2

We can identify PanN (C) \ Han with CN . For R > 0 let UR be the complement of {z ∈
CN ∩ Xan | max |zj | ≤ R} in Xan. The UR form a fundamental system of neighbourhoods of
Xan ∩Han in Xan. Fix R.

First let us prove

Lemma 1.1: a) If k ≥ 2 (resp. k ≥ 1), for every purely k-dimensional (sc. closed) analytic
subset C of UR \ Y an there is exactly (resp. at most) one purely k-dimensional analytic subset
C ′ of Xan \ Y an such that C ′ ∩ UR = C.

b) The mapping Ck(Xan \ Y an)→ Ck(UR \ Y an) is bijective if k ≥ 2 and injective if k ≥ 1.

Proof: a) see Theorem 3.2 in [H1].
b) follows from a).

Lemma 1.2: a) If D is a purely k-dimensional analytic subvariety of Xan \ Y an, k ≥ 2, every
meromorphic function on D ∩ UR extends to a unique meromorphic function on D.

b) Zk(Xan \ Y an)→ Zk(UR \ Y an) is bijective if k ≥ 1.

Proof: a) We modify (and correct) the proof of [H1] Theorem 3.4 which covers the special case
where D can be extended to a subvariety of Xan:
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Let f be a meromorphic function on UR ∩ D, and let p : D̃ → D be the normalization.
Let D̃sing be the singular locus of D̃, D∗ := D \ p(D̃sing), D̃

∗ := p−1(D∗). Let If◦p be the
set of points of p−1(UR ∩ D∗) where f ◦ p is indeterminate. Put D∗∗R := UR ∩ D∗ \ p(If◦p),
D̃∗∗R := p−1(D∗∗R ) and pR := p|D̃∗∗R : D̃∗∗R → D∗∗R . Let W̃ be a sufficiently small neighbourhood of

a point in D̃∗∗R . On W̃ , f ◦p can be written in the form g/h where g, h are holomorphic functions

on W̃ whose germs are relatively prime. Then (g, h) defines a section of O2
D̃
|W̃ ; it generates an

invertible OD̃|W̃ -module which depends only on f . Patching together we obtain an invertible
OD̃∗∗

R
-submodule S of O2

D̃∗∗
R

. Then (pR)∗S is an invertible p∗OD̃|D∗∗R -submodule of p∗O2
D̃
|D∗∗R ,

at the same time we can consider these two sheaves as coherent OD∗∗
R

-modules, too.

It is easy to see that (pR)∗S coincides with its (k − 1)-st gap sheaf relative to p∗O2
D̃
|D∗∗R

(see [S] p. 132): Let W be an open set in D∗∗R and A an analytic subset of W of dimension
≤ k− 1. Let s be a section of p∗O2

D̃
|W such that s|W \A is a section of (pR)∗S. Then s can be

considered as an element of Γ(p−1(W ),O2
D̃

) whose restriction to p−1(W \ A) is a section in S.

The latter can be uniquely extended to an element of Γ(p−1(W ),S) which has to coincide with
s ∈ Γ(p−1(W ),O2

D̃
).

Therefore (pR)∗S can be extended to a coherent OUR∩D-submodule of p∗O2
D̃
|UR ∩ D with

analogous properties, by the subsheaf extension theorem, see [ST], first part of the proof of
Theorem 1b. Note that the resulting sheaf can be considered after trivial extension as a coherent
OUR\Y -module, too.

By Theorem 3.3 of [H1] the subsheaf above can be uniquely extended to a coherent OX\Y -

submodule of p∗O2
D̃

which coincides with its (k − 1)-st relative gap sheaf; note that k − 1 ≥ 1
because k ≥ 2. Of course, it must be the trivial extension of a coherent OD-submodule T of
p∗O2

D̃
.

There is a discrete subset Σ of D such that T |D \Σ is even a p∗OD̃|D \Σ-module: note that
we have a multiplication mapping p∗OD̃ ⊗OD T → p∗O2

D̃
whose image is contained in T if we

restrict to UR∩D. Then use Lemma 3.1 of [H1]. (Note that X ⊂ Y should be replaced by X \Y
there.)

Now T |D \ Σ is finite as a OD\Σ-module, hence as a p∗OD̃|D \ Σ-module. As such it is
coherent, and its restriction to UR ∩D is invertible outside some analytic subset of codimension
≥ 2. Therefore T |D\Σ is an invertible p∗OD̃|D\Σ-module, too, outside some analytic subset of
codimension ≥ 2, after enlarging Σ if necessary: Otherwise there would be an irreducible analytic
subset of D \ Σ of dimension ≥ k − 1 > 0 where T is not invertible. Note that this irreducible
subset could be continued to an analytic subset of D, by the theorem of Remmert-Stein ([GR]
Theorem V D 5). Then use Lemma 3.1 of [H1] again.

Let D∗∗ be the subset of D∗ \Σ where T is invertible. If (g, h) is a local generator we obtain
using g/h a meromorphic function on D∗∗ which can be uniquely continued to a meromorphic
function on D∗ \Σ, hence on D \Σ and finally on D, by the Kontinuitätssatz [KK] 53.A.9. This
gives the desired extension of f .

b) Suppose that f is a meromorphic function on D, where D is a purely (k + 1)-dimensional
analytic subset of UR \ Y an. By Lemma 1.1a), there is exactly one purely (k + 1)-dimensional
analytic subset D′ of Xan \ Y an such that D′ ∩UR = D. By a) we may extend f to exactly one
meromorphic function on D′. The rest is clear.

Proof of Theorem 1: First assume that k ≥ 2. By Lemma 1.1b), the mapping Ck(Xan \
Y an) → Ck(UR \ Y an) is bijective. By Lemma 1.2b), Zk(Xan \ Y an) → Zk(UR \ Y an) is
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bijective. This implies that Ak(Xan \Y an)→ Ak(UR \Y an) is bijective, hence Ak(Xan \Y an)→
lim
→
Ak(U \ Y an), too.

Now assume only k ≥ 1. Then we know that Ck(Xan \ Y an) → Ck(UR \ Y an) is injective,
whereas Zk(Xan \ Y an) → Zk(UR \ Y an) is bijective. This implies that Ak(Xan \ Y an) →
Ak(UR \ Y an) is injective, hence Ak(Xan \ Y an)→ lim

→
Ak(U \ Y an), too.

Proof of Theorem 1’: We apply Lemma 1.1 and Lemma 1.2 in the case Y = ∅. According to
Lemma 1.1 we have that for every purely k-dimensional analytic subset C of UR there is exactly
(resp. at most) one purely k-dimensional analytic subset C ′ of Xan such that C ′ ∩ UR = C. If
no irreducible component of C is contained in Y an we know that the same holds for C ′, too. So
we obtain that Ck(Xan, Y an)→ Ck(UR, Y

an ∩ UR) is bijective (resp. injective).
Similarly, if k ≥ 1 and D is an analytic subvariety of X of dimension k + 1, we can extend

D to exactly one analytic subvariety of Xan of dimension k + 1, and if f is meromorphic on D
we can extend f to D′. Again, if D is not contained in Y an, D′ is not contained in Y an, too.
Therefore Zk(Xan, Y an) ' Zk(UR, UR ∩ Y an). Altogether we obtain Theorem 1’.

Now let us turn to the proof of Theorem 2. Suppose that k ≥ dim (Y ∩H)+2, so k ≥ dim Y +1,
and that U is an open neighbourhood of Xan ∩Han in Xan. As we will see in Proposition 3.2,
Ak(Xan) ' Ak(Xan \ Y an); with the same techniques we have Ak(U) ' Ak(U \ Y an).

Therefore we can suppose in the proof of Theorem 2 that Y ⊂ H. Furthermore we can assume
Y 6= ∅ because otherwise Theorem 2 coincides with Theorem 1 and 1’.

Let Ak be the sheaf of purely k-dimensional analytic subsets on Xan: if W is open in Xan let
Γ(W,Ak) be the set of all closed purely k-dimensional analytic subsets of W . If A is a locally
closed subset of Xan we have Γ(A,Ak) = lim

→
Γ(W,Ak) where W runs through the set of all open

neighbourhoods of A in Xan: this follows from [Go] II 3.3 Corollaire 1.

Lemma 1.3: The mapping Γ(Xan ∩ Han,Ak) → Γ(Xan ∩ Han \ Y an,Ak) is bijective if
k ≥ dim Y + 3 and injective if k ≥ dim Y + 2.

Proof: We may suppose X = PN . It is sufficient to show that the mapping

Γ(Xan ∩Han \ (Y ′)an,Ak)→ Γ(Xan ∩Han \ (Y ′′)an,Ak)

is bijective resp. injective if Y ′′ ⊂ Y ′ ⊂ Y and Y ′ \ Y ′′ is smooth of dimension l ≤ dim Y .
Let j : Xan ∩Han \ (Y ′)an → Xan ∩Han \ (Y ′′)an be the inclusion. Then it suffices to show

that the mapping

j∗(Ak|Xan ∩Han \ (Y ′)an)→ Ak|Xan ∩Han \ (Y ′′)an)

is bijective resp. injective.
We have to show this at every point of (Y ′)an ∩ Han \ (Y ′′)an. Choose local coordinates

z1, . . . , zN centered at this point such that Y ′an is locally described by zl+1 = . . . = zN = 0 and
Han by zN = 0. Fix ε0 = δ0 > 0 sufficiently small. For 0 < ε, δ < ε0 put Wε,δ := {z | |zj | <
ε0, j = 1, . . . , l, ε < max(|zl+1|, . . . , |zN−1|) < ε0, |zN | < δ}. Let (εν)ν≥1, (δν)ν≥1 be strictly
monotonously decreasing sequences of positive real numbers which converge to 0, where ε1 ≤
ε0, δ1 ≤ δ0, and put W :=

∞⋃
ν=1

Wεν ,δν . Note that the closures of the sets W obtained in this way
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form a fundamental system of neighbourhoods of {z | |zj | ≤ ε0, j = 1, . . . , N, (zl+1, . . . , zN−1) 6=
0, zN = 0} in {z | |zj | ≤ ε0, j = 1, . . . , N, (zl+1, . . . , zN ) 6= 0}.

Now it is sufficient to show: Every purely k-dimensional closed analytic subset of W admits
exactly (resp. at most) one extension to a closed analytic subset of {z | |zj | < ε, j = 1, . . . , N −
1, |zN | < δ1}. (*)

Here we proceed similarly as in the proof of Lemma 9 in [H2]. The essential point is
the following: Every purely k-dimensional analytic subset of {z | |zj | < ε0, j = 1, . . . , l, εν <
max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1} admits exactly (resp. at most) one extension
to a purely k-dimensional analytic subset of {z | |zj | < ε0, j = 1, . . . , l,max(|zl+1|, . . . , |zN−1|) <
ε0, δν+2 < |zN | < δ1}.

But this is just a consequence of [S] Theorem 2.18 resp. Lemma 2.17.
By induction, this makes it possible to extend every purely k-dimensional analytic subset

of W to exactly (resp. at most) one purely k-dimensional analytic subset of W ∪ {z | |zj | <
ε0, j = 1, . . . , N − 1, δν < |zN | < δ1} ∪ {z | |zj | < ε0, j = 1, . . . , N − 1,max(|zj+1|, . . . , |zN−1| >
εν , |zN | < δ1}, hence of {z | |zj | < ε0, j = 1, . . . , N − 1, |zN | < δ1} \ Y ′, or of {z | |zj | < ε0, j =
1, . . . , N − 1, |zN | < δ1}, by the extension theorem of Remmert-Stein ([GR] Theorem V D 5).
This implies (*).

As a consequence we obtain the following Lefschetz type theorem:

Theorem 1.4: The mapping Γ(Xan \ Y an,Ak) → Γ(Xan ∩ Han \ Y an,Ak) is bijective if
k ≥ dim Y + 3 and injective if k ≥ dim Y + 2.

Proof: By Lemma 1.1, Γ(Xan,Ak) ' Γ(Xan ∩Han,Ak). Using Lemma 1.3 we conclude that
Γ(Xan,Ak)→ Γ(Xan∩Han\Y an,Ak) is bijective (resp. injective). By the theorem of Remmert-
Stein ([GR] Theorem V D 5), Γ(Xan,Ak) ' Γ(Xan \ Y an,Ak).

Now let us look at meromorphic functions:

Lemma 1.5: If k ≥ dim Y + 3 and D is a k-dimensional subvariety of X we have that
Γ(Dan ∩Han,MDan) ' Γ(Dan ∩Han \ Y an,MDan).

Proof: Replacing Y by Y ∩D we may assume that Y ⊂ D.
Let us take up the notations of the proof of Lemma 1.3. Then it is sufficient to show:

j∗(Mk|Dan ∩Han \ (Y ′)an) 'Mk|Dan ∩Han \ (Y ′′)an

Again, it suffices to show that every meromorphic function on W ∩Dan extends (uniquely) to
a meromorphic function on Dan ∩ {z | |zj | < ε0, j = 1, . . . , N − 1, |zN | < δ1}. The essential
point is to show that every meromorphic function on Dan ∩ {z | |zj | < ε0, j = 1, . . . , l, εν <
max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1} admits exactly one meromorphic extension on
Dan ∩ {z | |zj | < ε0, j = 1, . . . , l,max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δν}. (**)

If we have this we proceed as in the proof of Lemma 1.3: Every meromorphic function on
Dan∩W admits exactly one meromorphic extension toDan∩{z | |zj | < ε0, j = 1, . . . , N−1, |zN | <
δ1} \ Y ′, hence to Dan ∩ {z | |zj | < ε0, j = 1, . . . , N − 1, |zN | < δ1}, by the Kontinuitätssatz, see
[KK] 53.A.9.

In order to prove (**) we proceed as in the proof of Lemma 1.2, case k ≥ 3. The essential
point is to show the following lemma:
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Lemma 1.6: Let G be a coherent analytic sheaf on {z | |zj | < ε0, j = 1, . . . , l,max(|zl+1|, . . . , |zN−1|) <
ε0, δν+2 < |zN | < δ1} and F a coherent analytic subsheaf of G|{z | |zj | < ε0, j = 1, . . . , l, εν <
max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1}. Assume that for all open subsets W of
{z | |zj | < ε0, j = 1, . . . , l, εν < max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1} and all ana-
lytic subsets A of W with dim A ≤ l + 1 the following holds:

Every section of G|W whose restriction to W \A belongs to F|W \A is a section of F|W .
Then F extends uniquely to a coherent analytic subsheaf of G with the analogous property.

Proof: Apply [S] Theorem 4.5, p. 156, with n = l + 1.

Therefore we get the following Lefschetz theorem for meromorphic functions:

Theorem 1.7: If k ≥ dim Y + 3 and D is a k-dimensional subvariety of X not contained in Y
we have that Γ(Dan \ Y an,MDan) ' Γ(Dan ∩Han \ Y an,MDan).

Proof: By the theorem of Remmert-Stein, we have Γ(Dan,MDan) ' Γ(Dan \Y an,MDan). The
rest follows from Lemma 1.2 and 1.5.

Proof of Theorem 2: By Theorem 1.4, Ck(Xan \ Y an)→ lim
→
Ck(V ) is bijective (resp. injec-

tive).
Furthermore, Theorem 1.7 implies that Zk(Xan \ Y an) ' lim

→
Zk(V ).

This implies that the mapping Ak(Xan \ Y an)→ lim
→
Ak(V ) is bijective (resp. injective). By

Theorem 1 we have Ak(Xan\Y an) ' lim
→
Ak(U\Y an). Note that we have assumed Y ⊂ H,Y 6= ∅.

2. Algebraic context: Proof of Theorem 3 and 4

Here we need the following two lemmas:

Lemma 2.1: If k ≥ dim Y +3, for every k-dimensional formal subvariety (i.e. non-empty closed

irreducible reduced formal subscheme) C of X̂ \ Ŷ there is exactly one subvariety C ′ of X \ Y
such that Ĉ ′ = C.

Proof: Existence: C is also a formal subvariety of P̂N (C) \ Ŷ . Then apply Corollary 6 of [F1]
with Y instead of Z: there is an extension of C to a closed subscheme C ′ of PN (C) \ Y , “ex-

tension” means that Ĉ ′ = C. Replacing C ′ by C ′ ∩X if necessary we may suppose that C ′ is a
closed subscheme of X \Y . We may take C ′ to be reduced. If we take an irreducible component

C ′0 with Ĉ ′0 6= ∅ we get that Ĉ ′0 = C, so there is an extension to a subvariety of X \ Y . The
uniqueness is clear.

Lemma 2.2: If D is a (k + 1)-dimensional subvariety of X \ Y , k ≥ dim Y + 2, every rational

function on D̂ extends to a (unique) rational function on D.

Proof: This follows from [F1] Corollary 3 with Y instead of Z.

Proof of Theorem 3: Apply Lemma 2.1 and 2.2 with Y := ∅.
First suppose that k ≥ 1. If C ′ is a k-dimensional subvariety of X not contained in Y we

have that C ′ ∩ H 6= ∅, so Ĉ ′ 6= ∅, end Ĉ ′ 6⊂ Ŷ because otherwise C ′ ⊂ Y . This implies that
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Ck(X\Y )→ Ck(X̂, Ŷ ) is injective. By Lemma 2.1 and 2.2 we obtain that Zk(X\Y )→ Zk(X̂, Ŷ )
is bijective. So we obtain injectivity.

Now suppose k ≥ 2. By Lemma 2.1 and 2.2, for every k-dimensional formal subvariety C of
X̂ not contained in Ŷ there is exactly one subvariety C ′ of X such that Ĉ ′ = C; in fact, we have
C ′ ⊂ X \ Y . Similarly, if f is a rational function on a (k + 1)-dimensional formal subvariety C

of X̂ \ Ŷ , we have a unique subvariety D′ of X \ Y with D̂′ = D and a unique rational function
on D′ which induces f . In total we obtain bijectivity.

Proof of Theorem 4: Using Lemma 2.1 and 2.2 we get that Ck(X \ Y ) → Ck(X̂ \ Ŷ ) is

bijective (resp. injective) and that Zk(X \ Y )→ Zk(X̂ \ Ŷ ) is bijective. Note that a subvariety

C ′ of X \ Y of dimension ≥ dimY + 2 must intersect H \ Y , so Ĉ ′ 6= ∅ in X̂ \ Ŷ . We conclude

that Ak(X \ Y )→ Ak(X̂ \ Ŷ ) is bijective (resp. injective).

Furthermore, Ak(X \ Y ) ' Ak(X̂, Ŷ ) by Theorem 3. So we obtain Theorem 4.

3. Remarks on the comparison of the analytic and algebraic context

The comparison is especially simple in the case of Ak(X,Y ) and the corresponding analytic
object. If we pass to the formal context it seems that the following assertion (*) is considered
as a consequence of GAGA theory, see [F2] p. 737 resp. [B] §10, p. 115:

a) For every formal analytic subvariety C of X̂an there is exactly one formal subvariety C ′ of X̂
such that (C ′)an = C.

b) Let D be a formal subvariety of X̂. Every formal meromorphic function f on Dan is rational,
i.e. there is a (unique) formal rational function g on D such that gan = f . (*)

Remark 3.1: Adopting (*) we have a commutative diagram

Ak(X,Y ) −→ Ak(X̂, Ŷ )
↓' ↓'

Ak(Xan, Y an) → lim
→
Ak(U,U ∩ Y an) → Ak(X̂an, Ŷ an)

where all arrows are bijective if k ≥ 2 resp. injective if k ≥ 1.
Here U runs through the set of open neighbourhoods of Xan ∩Han in Xan.

Proof: By Chow’s theorem ([GR] Theorem V D 7), analytic subvarieties of Xan are algebraic.
Therefore it is easy to see that Ck(X,Y ) ' Ck(Xan, Y an). Now let D be a subvarity of X. By
Hurwitz’ theorem, see [Fi] 4.7, every meromorphic function on Dan is rational, i.e. comes from
a (unique) rational function on D. Therefore Zk(X,Y ) ' Zk(Xan, Y an). Altogether, the left
vertical arrow is bijective.

By (*) it is easy to see that Ck(X̂, Ŷ ) ' Ck(X̂an, Ŷ an) and Zk(X̂, Ŷ ) ' Zk(X̂an, Ŷ an), so the
right vertical is bijective, too.

The upper arrow is bijective (resp. injective) by Theorem 3.
So the composition of the lower horizontal mappings is bijective (resp. injective).
By Theorem 1’, the first lower horizontal arrow is bijective (resp. injective). If k ≥ 2 we

obtain our statement. But in order to treat the case k = 1 we need that the second lower
horizontal arrow is injective in this case, too. This can easily be proved: Let k ≥ 1. Every
purely k-dimensional analytic subvariety C ′ of UR is uniquely determined by its completion Ĉ ′,
so Ck(UR, UR ∩ Y an)→ Ck(X̂an, Ŷ an) is injective, and Zk(UR, UR ∩ Y an) ' Zk(X̂an, Ŷ an): the

injectivity is clear, the surjectivity comes from that of Zk(Xan, Y an)→ Zk(X̂an, Ŷ an): we have
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Zk(Xan, Y an) ' Zk(X,Y ) ' Zk(X̂, Ŷ ) ' Zk(X̂an, Ŷ an). This makes the proof of Theorem 1’
superfluous!

It is plausible that we should have a connection between the algebraic and analytic case with
respect to Theorem 2 and 4, too. First notice:

Proposition 3.2: If k ≥ dim Y + 1 we have a commutative diagram

Ak(X) ' Ak(X \ Y )
↓' ↓'

Ak(Xan) ' Ak(Xan \ Y an)

Proof: By the theorem of Remmert-Stein ([GR] Theorem V D 5), irreducible analytic subsets
of Xan \Y an of dimension ≥ dim Y +1 extend to Xan. By Chow ([GR] V D 7), analytic subsets
of Xan are algebraic.

Of course, Zariski-closed subsets of X \ Y extend to X.
On the other hand, if D is an irreducible subvariety of X of dimension ≥ dim Y + 2, ev-

ery meromorphic function on Dan \ Y an is meromorphic on Dan by the Kontinuitätssatz [KK]
53.A.9. Meromorphic functions on Xan are rational by Hurwitz’ Theorem, see [Fi] 4.7. Note
that rational functions on X \ Y coincide wth those on X.

Now let us state the following conjecture:

Conjecture 3.3: The mapping Ak(X̂ \ Ŷ )→ Ak(X̂an \ Ŷ an) is bijective if k ≥ dim (Y ∩H) + 3
and injective if k ≥ dim (Y ∩H) + 2.

Remark 3.4: Suppose that Conjecture 3.3 holds. Then we have a commutative diagram

Ak(X \ Y ) −→ Ak(X̂ \ Ŷ )
↓ ↓

Ak(Xan \ Y an) → lim
→
Ak(V ) → Ak(X̂an \ Ŷ an)

where all arrows are bijective if k ≥ dim (Y ∩H) + 3 resp. injective if k ≥ dim (Y ∩H) + 2.
Here V runs through the set of all open neighbourhoods of Xan ∩Han \ Y an in Xan \ Y an.

Proof: By Proposition 3.2, the left vertical is bijective. Now Conjecture 3.3 yields that the
right vertical is bijective (resp. injective).

The upper horizontal is bijective (resp. injective) because of Theorem 4.
So the composition of the lower horizontal mappings is bijective (resp. injective).
Now suppose k ≥ dim Y ∩H + 3. Then the first mapping in the lower horizontal is bijective,

by Theorem 2. Altogether this implies that all arrows are bijective.
However we can argue in a simpler way which would lead (if Conjecture 3.3 holds) to a new

proof of Theorem 2 and allows to treat the case k = dim Y ∩H + 2, too: It is easy to see that
the second arrow in the lower horizontal is injective for k ≥ dim Y ∩H + 2.

Every purely k-dimensional analytic subset C of V is uniquely determined by its completion
Ĉ, so lim

→
Ck(V )→ Ck(X̂an \ Ŷ an) is injective. Also, lim

→
Zk(V )→ Zk(X̂an \ Ŷ an) is surjective:

this follows from Zk(Xan \ Y an ' Zk(X \ Y ) ' Zk(X̂ \ Ŷ ) ' Zk(X̂an \ Ŷ an). This yields the
desired injectivity.
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