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SINGULARITIES OF ONE-PARAMETER PEDAL UNFOLDINGS OF

SPHERICAL PEDAL CURVES

T. NISHIMURA

Abstract. In this paper, we present the concept of one-parameter pedal unfoldings of a

pedal curve in the unit sphere S2, and we classify their generic singularities with respect to
A-equivalence.

1. Introduction

Let I be an open interval containing zero, and let S2 be the unit sphere in Euclidean space
R3. A C∞ map r : I → S2 is called a spherical unit speed curve if

∥∥dr
ds (s)

∥∥ is 1 for any s ∈ I.

For a given spherical unit speed curve r : I → S2, we put

t(s) =
dr

ds
(s), n(s) = r(s)× t(s),

where r(s) × t(s) denotes the vector product of r(s) and t(s). The construction clearly shows
that the vector t(s) is perpendicular to the vector r(s) and that the vector n(s) is perpendicular
to both r(s) and t(s). The map n : I → S2 is called the spherical dual of r; the singularities of
spherical dual curves are Legendrian singularities that are relatively well investigated [1, 2, 3, 4,
5, 21].

For a point P ∈ S2, let EP denote the set {X ∈ S2 | P · X = 0}, where P · X denotes the
scalar product of P and X. For a given spherical unit speed curve r : I → S2, consider a point
P of S2 − {±n(s) | s ∈ I}, where n is the spherical dual of r. The spherical pedal curve relative
to the point P for a given spherical unit speed curve r : I → S2 is a curve obtained by mapping
s ∈ I to the nearest point in En(s) from P . The pedal curve relative to P for r is denoted by
pedr,P , and the point P is called the pedal point of the pedal curve pedr,P . Note that all points
in En(s) are equidistant from ±n(s); hence, the point P must lie outside {±n(s) | s ∈ I} to
satisfy the definition of pedr,P . The classification of singularities of spherical pedal curves can
be found in literature [17, 18, 19].

Suppose that the location of the pedal point P moves smoothly, depending on one-parameter
λ ∈ J , where J is an open interval containing zero in R. In other words, suppose that there exist
an open interval J containing zero and a C∞ immersion P : J → S2. Then, the pedal unfolding
of the pedal curve pedr,P (0) can be defined as the map Un-pedr,P : I × J → S2 × J , given by

Un-pedr,P (s, λ) = (pedr,P (λ)(s), λ).

Two C∞ map-germs f, g : (Rn, 0)→ (Rp, 0) are said to be A-equivalent if there exist germs of
C∞-diffeomorphisms h1 : (Rn, 0)→ (Rn, 0) and h2 : (Rp, 0)→ (Rp, 0) such that f ◦ h1 = h2 ◦ g.
For a spherical unit speed curve germ r : (I, 0)→ S2, we put κ(s) = n(s) ·t′(s), where t′ denotes
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Table 1. Normal forms of A-simple monogerms (R2, 0)→ (R3, 0) ([15])

Germ Name
f(s, λ) = (s, s2, λ) Immersion
f(s, λ) = (s3 + λs, s2, λ) Cross-cap (S0)
f(s, λ) = (s3 ± λk+1s, s2, λ), (k ≥ 1) S±k
f(s, λ) = (λ2s± s2k+1, s2, λ), (k ≥ 2) B±k
f(s, λ) = (λs3 ± λks, s2, λ), (k ≥ 3) C±k
f(s, λ) = (λ3s+ s5, s2, λ) F4

f(s, λ) = (λs+ s3k−1, s3, λ), (k ≥ 2) Hk

the derivative of t. Then, the point r(0) is called the inflection point (resp., ordinary inflection
point) if κ(0) = 0 holds (resp., κ(0) = 0 and κ′(0) 6= 0 hold). For any k ≥ 0, a C∞ immersed
curve germ P : (J, 0)→ S2 is said to have (k+1)-point contact with r : (I, 0)→ S2 at P (0) = r(0)
if P (0) = r(0), F ◦ P (0) = (F ◦ P )′(0) = · · · = (F ◦ P )(k)(0) = 0, and (F ◦ P )(k+1)(0) 6= 0 hold
for any neighbourhood U of r(0) and any non-singular C∞ function F : U → R such that
F ◦ r(s) = 0 (for details on (k + 1)-point contact, see [5]). It can be clearly seen that a C∞

immersed curve germ P : (J, 0)→ S2 has 1-point contact with r : (I, 0)→ S2 at P (0) = r(0) if
and only if P and r are transverse at P (0) = r(0).

Theorem 1. Let I, J be open intervals containing 0 ∈ R, and let r : I → S2 be a spherical
unit speed curve such that r(0) is not an inflection point. Furthermore, let P : J → S2 be a C∞

immersion. Then, the following hold:

(1) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is immersive if and
only if P (0) 6= r(0).

(2) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the
cross-cap in Table 1 if und only if P (0) = r(0) and P, r are transverse at P (0) = r(0).

(3) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to S±k
in Table 1 if and only if P (0) = r(0) and P has (k + 1)-point contact with r at 0 ∈ J
(k ≥ 1).

(4) The A-equivalence classes of map-germs B±k , C
±
k , F4, and Hk in Table 1 can never be

realized as singularities of the pedal unfolding Un-pedr,P .
(5) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to

the cuspidal edge in Table 2 if and only if P (0) = r(0) and (P (J), P (0)) coincides with
(r(I), r(0)) as set-germs.

If k is even, then it can be clearly seen that S+
k is A-equivalent to S−k [15]. On the other

hand, S+
k is not A-equivalent to S−k if k is odd. Figure 2 shows that the curvature of r at

zero is greater than the curvature of P at zero if and only if the pedal unfolding Un-pedr,P is
A-equivalent to S−k . Since S±1 has been investigated independently in [6], it is reasonable to

classify the A-equivalence class of S±1 as Chen-Matumoto-Mond singularity.

Theorem 2. Let I, J be open intervals containing 0 ∈ R, and let r : I → S2 be a spherical unit
speed curve such that r(0) is an ordinary inflection point. Furthermore, let P : J → S2 be a C∞

immersion. Then, the following hold:

(1) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the
cuspidal edge in Table 2 if and only if P (0) 6∈ En(0).
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Figure 1. Cross-cap. Left: λ = −ε, Center: λ = 0, Right: λ = ε.

Figure 2. S−1 . Left: λ = −ε, Center: λ = 0, Right: λ = ε.

Table 2.

Germ Name
g(s, λ) = (s3, s2, λ) Cuspidal edge
g+0 (s, λ) = (s5 + λs3, s2, λ) Cuspidal cross-cap (Cuspidal S0)
g±k (s, λ) = (s5 ± λk+1s3, s2, λ), (k ≥ 1) Cuspidal S±k

(2) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the
cuspidal cross-cap in Table 2 if und only if P (0) ∈ En(0)−{r(0)} and P is transverse to
En(0) at P (0).

(3) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to
cuspidal S±k (k ≥ 1) in Table 2 if and only if P (0) ∈ En(0) − {r(0)} and P has (k + 1)-
point contact with En(0) (k ≥ 1).

As in the case of S±k singularities, it can be clearly seen that cuspidal S+
k singularity is A-

equivalent to cuspidal S−k singularity if k is even. On the other hand, cuspidal S+
k singularity

is not A-equivalent to cuspidal S−k singularity if k is odd. Figure 4 shows that for a sufficiently
small positive real number ε, there exists a positive real number δ such that the union of tangent
lines ∪s∈(−ε,ε)En(s) contains the images P ((−δ, δ)) if and only if the map-germ Un-pedr,P :

(I×J, (0, 0))→ S2×J is A-equivalent to cuspidal S−k singularity. Since map-germ g+0 singularity
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Figure 3. Cuspidal cross-cap. Left: λ = −ε, Center: λ = 0, Right: λ = ε.

Figure 4. Cuspidal S−1 . Left: λ = −ε, Center: λ = 0, Right: λ = ε.

is known as the normal form of the cuspidal cross-cap (see [11]), it is reasonable to classify the
A-equivalence class of the map-germ gk,± (resp., g1,±) as cuspidal S±k singularity (resp., cuspidal
Chen-Matumoto-Mond singularity).

It can be clearly seen that the cuspidal edge, cuspidal cross-cap, and cuspidal S±k are not
finitely A-determined (but finitely K-determined) by the Mather-Gaffney geometric character-
ization of finite determinacy, even though S±k singularity is (k + 2)-A-determined [15] (for the
definition of finite determinacy and Mather-Gaffney geometric characterization, see [23]). Thus,
in order to prove Theorems 1 and 2 in a unified manner, it is difficult to directly use the standard
techniques of the finite determinacy theory developed in [8, 9, 10, 13, 14, 15, 20, 23].

On the other hand, Saji succeeded in obtaining simple criteria for Chen-Matumoto-Mond
singularity and cuspidal S±k -singularities [22]. Although Saji’s criteria are useful, the criteria for

S±k singularities (k ≥ 2) have not been provided by him; therefore, Saji’s criteria are not suited
to our purpose. In this study, we plan to develop a unified method for proving Theorems 1 and
2; hence, we adopt a recognition criterion for map-germs that appear as singularities of pedal
unfoldings. It is important to note that this criterion has already been presented in a suitable
form in [15].

The preliminary work required to prove Theorems 1 and 2 is presented in Section 2. Theorems
1 and 2 are proved in Sections 3 and 4, respectively.
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2. Preliminaries

2.1. Spherical pedal curves. Let I, S2, and r : I → S2 be an interval containing zero, the
unit sphere in R3, and a spherical unit speed curve respectively. Furthermore, let t : I → S2,
n : I → S2 be map-germs, as described in Section 1. Then, we have the following Serret-Frenet
type formula.

Lemma 2.1 ([17]).  r′(s)
t′(s)
n′(s)

 =

 0 1 0
−1 0 κ(s)
0 −κ(s) 0

 r(s)
t(s)
n(s)

 .

By Lemma 2.1, the dual curve germ n : (I, 0)→ S2 is non-singular at 0 if and only if κ(0) 6= 0.
By using Lemma 2.1 recursively, we obtain the following:

Lemma 2.2. (1) Suppose that κ(0) 6= 0. Then, the properties r(0) ·n′(0) = 0, r(0) ·n′′(0) 6=
0, and t(0) · n′(0) 6= 0 hold.

(2) Suppose that κ(0) = 0 and κ′(0) 6= 0. Then, the properties r(0) ·n′(0) = r(0) ·n′′(0) = 0,
r(0) · n(3)(0) 6= 0, t(0) · n′(0) = 0, and t(0) · n′′(0) 6= 0 hold.

Let P be a point of S2 − {±n(s) | s ∈ I}.

Lemma 2.3 ([17]). The pedal curve of r relative to the pedal point P is given by the following
expression:

pedr,P (s) =
1√

1− (P · n(s))2
(P − (P · n(s))n(s)).

Let ΨP be the C∞ map from S2 − {±P} to S2, given by

ΨP (X) =
1√

1− (P ·X)2
(P − (P ·X)X).

The map ΨP , which has been introduced and used in [17, 18, 19] (the hyperbolic version of
ΨP has been introduced and investigated independently in [12]), has the following distinctive
properties :

(1) X ·ΨP (X) = 0 for any X ∈ S2 − {±P}.
(2) ΨP (X) ∈ RP + RX for any X ∈ S2 − {±P}.
(3) P ·ΨP (X) > 0 for any X ∈ S2 − {±P}.

By property 3, ΨP (S2 − {±P}) lies inside the open hemisphere centered at P . By properties 1
and 2, ΨP (EP ) = P . Let the open hemisphere centered at P be denoted by HP , and put BP =
π(S2−{±P}), where π : S2 → P 2(R) is the canonical projection. Since ΨP (X) = ΨP (−X), the

map ΨP canonically induces the map Ψ̃P : BP → HP . Then, by Lemma 2.3, pedr,P is factored
into three maps as follows:

pedr,P (s) = Ψ̃P ◦ π ◦ n(s).

Let p : B → R2 be the blow up centered at the origin in R2.

Lemma 2.4 ([17]). Let P be a point of S2. Then, there exist C∞ diffeomorphisms h1 : BP → B

and h2 : HP → R2 such that the equality h2 ◦ Ψ̃P = p ◦ h1 holds, and the set π(EP ) is mapped
to the exceptional set of p by h1.
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2.2. Criterion for recognition problem due to Mond. Let T : R2 → R2 be the linear
transformation of the form T (s, λ) = (−s, λ). Two C∞ function germs p1, p2 : (R2, 0) → (R, 0)
are said to be KT -equivalent if there exist a germ of C∞ diffeomorphism h : (R2, 0)→ (R2, 0) of
the form h ◦ T = T ◦ h and a C∞ function-germ M : (R2, (0, 0)) → R of the form M ◦ T = M ,
M(0, 0) 6= 0 such that p1 ◦ h(s, λ) = M(s, λ)p2(s, λ) ([15]).

Theorem 3 ([15]). Two C∞ map-germs of the following form

fi(s, λ) = (spi(s
2, λ), s2, λ) where pi(s

2, λ) 6∈ m∞2 , (i = 1, 2)

are A-equivalent if and only if the function-germs pi(s
2, λ) are KT -equivalent.

Note that Theorem 3 provides a criterion for the A-equivalence of C∞ map-germs of the
forms (s, λ) 7→ (ϕ(s, λ), s2, λ) (ϕ : (R2, 0) → (R, 0) is a C∞ function-germ) on the basis of the
Malgrange preparation theorem (for the Malgrange preparation theorem, see [4, 23]).

3. Proof of Theorem 1

Since r(0) is not an inflection point, the dual germ n : (I, 0)→ S2 is a C∞ immersive germ.

Proof of assertion 1 of Theorem 1.
Suppose that P (0) does not belong to En(0). Then, by Lemma 2.4, the restriction ΨP (0)|S2−{±P (0)}−EP (0)

is C∞ immersive. Thus, by Lemma 2.3, the map-germ pedr,P (0) : (I, 0) → S2 is also C∞ im-

mersive. Therefore, the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is also C∞ immersive.
Next, suppose that P (0) ∈ En(0) − r(0). Then, the image of the dual n and EP (0) intersect

transeversely at n(0). Thus, by Lemmata 2.3 and 2.4, the map-germ pedr,P (0) : (I, 0) → S2

is C∞ immersive. Therefore, the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is also C∞

immersive.
Conversely, suppose that the map-germ Un-pedr,P : (I×J, (0, 0))→ S2×J is C∞ immersive.

Then, in particular, the map-germ pedr,P (0) : (I, 0) → S2 is also C∞ immersive. In order to
conclude the proof of assertion 1 of Theorem 1, it is sufficient to show that the assumption
P (0) = r(0) implies a contradiction. The assumption P (0) = r(0) implies that the image of n is
tangent to EP (0) at n(0). By Lemma 2.4, the map-germ pedr,P (0) : (I, 0)→ S2 must be singular;
this is a contradiction. 2

Proof of assertion 5 of Theorem 1.
Suppose that both P (0) = r(0) and (P (J), P (0)) = (r(I), r(0)) as set-germs hold. Then, for

any λ ∈ J , pedr,P (λ) : (I, 0)→ S2 is A-equivalent to the ordinary cusp s 7→ (s3, s2) by [17] (also,
see [19]). Thus, by using the Malgrange preparation theorem and Theorem 3, the map-germ
Un-pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to the cuspidal edge (s, λ) 7→ (s3, s2, λ).

Conversely, suppose that the map-germ Un-pedr,P : (I×J, (0, 0))→ S2×J is A-equivalent to
the cuspidal edge. Then, in particular, for any sufficiently small λ0 ∈ J , there exists a sufficiently
small s0 ∈ I such that the map-germ pedr,P (λ0) : (I, s0) → S2 is singular. Since r(0) is not an

inflection point, by Lemma 2.4, EP (λ0) = S2 ∩ (Rt(s0) + Rn(s0)). Therefore, P (λ0) = r(s0). 2

Proof of assertions 2 and 3 of Theorem 1.
By composing an appropriate rotation without the loss of generality, it can be assumed that

r(0) = (0, 1, 0), t(0) = (0, 0, 1), n(0) = (−1, 0, 0). For a point Q of S2, put H(Q) = {X ∈
S2 | Q ·X ≥ 0}, and let αn(0) : H(n(0))−En(0) → {−1} ×R2 be the central projection relative
to n(0). Then, by Lemma 2.2, the germ of composition αn(0) ◦ n is of the form

αn(0) ◦ n(s) =
(
s+ ϕ1(s), s2 + ϕ2(s)

)
(ϕj(s) = o(sj)).
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Since ϕ2(s) = o(s2), the map-germ given by h

(
s
√

1 + ϕ2(s)
s2

)
= s is a well-defined germ of local

C∞ diffeomorphism. Thus, there exists a C∞ map-germ ϕ̃1 : (I, 0)→ R such that

αn(0) ◦ n ◦ h(s) =
(
s+ ϕ̃1(s), s2)

)
(ϕ̃1(s) = o(s)).

Let αP (0) : H(P (0)) − EP (0) → R × {1} × R be the central projection relative to P (0). By the
form mentioned above and Lemma 2.4, the germ of composition αP (0) ◦pedr,P (0) is A-equivalent
to a map-germ of the following form:

s 7→
(
(s+ ϕ̃1(s))s2, s2

)
.

Next, we investigate the influence of moving the pedal points P (λ). Suppose that P (0) = r(0)
and P has (k + 1)-point contact with r at 0 ∈ J (k ≥ 0). In other words, suppose that there
exist a sufficiently small neighborhood U of r(0) in S2 and a C∞ function F : U → R such
that F ◦ r(s) ≡ 0 (∀s ∈ I ∩ r−1(U)), F ◦ P (0) = (F ◦ P )′(0) = · · · = (F ◦ P )(k)(0) = 0,
and (F ◦ P )(k+1)(0) 6= 0. Since r : I → S2 is a unit speed curve, it can be assumed that
F is non-singular provided that I (resp., U) is a sufficiently small neighborhood of 0 (resp.,

r(0)). Then, there exists a sufficiently small neighborhood Ũ ⊂ U of r(0) such that for any

X ∈ Ũ , the integral curve of −grad(F ) starting from X lies within Ũ until it reaches the image
of the unit speed curve r(I). Let this reaching point be denoted by γ(X) and define the map

Γ : Ũ → I as Γ(X) = r−1 ◦γ(X). Then, (Ũ , (Γ, F )) can be used as a chart at r(0) since the map

(Γ, F ) : Ũ → I ×R is non-singular. By using the chart (Ũ , (Γ, F )) and by the proof of assertion
5 of Theorem 1, the germ of composition(

s, λ) 7→ (αP (0) ◦ pedr,P (λ) ◦ h(s), λ
)

is A-equivalent to a map-germ of the following form:

(a) (s, λ) 7→
(
(s+ ϕ̃1(s))

(
s2 ± F ◦ P (λ)

)
, s2 ± F ◦ P (λ), λ

)
.

Furthermore, by the Malgrange preparation theorem and Theorem 3, a map-germ of the form
(a) must be A-equivalent to the map-germ f±k (s, λ) =

(
s
(
s2 ± λk+1

)
, s2, λ

)
.

Conversely, we suppose that the germ of pedal unfolding Un-pedr,P : (I × J, (0, 0))→ S2 × J
is A-equivalent to S±k (k ≥ 0), P (0) = r(0) and that P does not have (k+ 1)-point contact with
r at 0 ∈ J . Then, by the proof presented above, for any positive integer `, P does not have

(`+1)-point contact with r at 0 ∈ J . In particular, there exists a C∞ immersion P̃ : J → S2 such

that P̃ is sufficiently near P under the Whitney C∞ topology, and P̃ has (k + 2)-point contact
with r at 0 ∈ J . By the proof of the implication described above, it can be concluded that
S±k singularity is adjacent to S±k+1 singularity; however, this contradicts the adjacency diagram
given in [15]. 2

Proof of assertion 4 of Theorem 1.

Suppose that the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to one
of B±k , C

±
k , F4, and Hk. Then, by assertions 1, 2, and 3 of Theorem 1, the given immersion

P : J → S2 must satisfy not only P (0) = r(0) but also the condition that for any positive
integer `, P does not have (`+ 1)-point contact with r at 0 ∈ J . Thus, for any positive integer `,

there exists a C∞ immersion P̃ : J → S2 such that P̃ is sufficiently near P under the Whitney

C∞ topology, and P̃ has the (` + 1)-contact with r at 0 ∈ J . Hence, it can be concluded that
one of B±k , C

±
k , F4, and Hk singularity is adjacent to S±` singularity for any positive integer `;

however, this contradicts the adjacency diagram given in [15]. 2
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4. Proof of Theorem 2

Since r(0) is an ordinary inflection point, by Lemma 2.2 and the Malgrange preparation
theorem, the dual germ n : (I, 0)→ S2 is A-equivalent to the ordinary cusp s 7→ (s3, s2).

Proof of assertion 1 of Theorem 2.
Suppose that P (0) does not belong to En(0). Then, for any sufficiently small λ0 ∈ J , P (λ0)

lies outside En(0). This implies that by Lemma 2.4, the map-germ ΨP (λ0) at n(0) is non-singular.

Thus, by Lemma 2.3, the map-germ pedr,P (λ0) : (I, 0)→ S2 is also A-equivalent to the ordinary

cusp. Therefore, by Theorem 3, the map-germ Un-pedr,P : (I×J, (0, 0))→ S2×J is A-equivalent
to the cuspidal edge.

Conversely, suppose that the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent
to the map-germ g(s, λ) = (s3, s2, λ); we show that P (0) ∈ En(0) implies a contradiction under
this assumption. The property P (0) ∈ En(0) implies that n(0) ∈ EP (0). Since the dual germ

n : (I, 0) → S2 is A-equivalent to the ordinary cusp s 7→ (s3, s2), by Lemma 2.4, n(0) ∈ EP (0)

implies that j3(Un-pedr,P )(0) is not A3-equivalent to j3g(0). This contradicts the assumption
that Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the map-germ g(s, λ) = (s3, s2, λ).
2

Proof of “if” parts of assertions 2 and 3 of Theorem 1.
Since P (0) belongs to En(0) − {r(0)}, by composing an appropriate rotation without the

loss of generality, it can be assumed that n(0) = (−1, 0, 0) and P (0) = (0, 0, 1). Let αn(0) :

H(n(0))− En(0) → {−1} × R2 be the central projection relative to n(0). Then, by Lemma 2.2,
the germ of composition αn(0) ◦ n is of the form

αn(0) ◦ n(s) = (as2 + bs3 + ϕ1(s), cs2 + ds3 + ϕ2(s)),

where bc 6= 0 and ϕj(s) = o(s3). Since c 6= 0, there exists a germ of C∞ diffeomorphism
h : (I, 0)→ (I, 0) such that

αn(0) ◦ n ◦ h(s) = (ãs2 + b̃s3 + ϕ̃1(s), s2),

where b̃ 6= 0 and ϕ̃1(s) = o(s3). Let αP (0) : H(P (0))−EP (0) → R2×{1} be the central projection
relative to P (0). By the form mentioned above and Lemma 2.4, the germ of composition αP (0) ◦
pedr,P (0) is A-equivalent to a map-germ of the following form:

s 7→
(

(ãs2 + b̃s3 + ϕ̃1(s))s2, s2
)
.

Next, we investigate the influence of moving the pedal points P (λ). Suppose that P (0) = r(0)
and P has (k+1)-point contact with En(0) at 0 ∈ J (k ≥ 0). Since En(0) is defined by the equation
n(0) ·X = 0, the assumption of (k + 1)-point contact implies that n(0) · P (0) = n(0) · P ′(0) =
· · · = n(0) · P (k)(0) = 0 and n(0) · P (k+1)(0) 6= 0. Then, as in the proof of assertions 2 and 3 of
Theorem 1, the germ of composition

(s, λ) 7→ (αP (0) ◦ pedr,P (λ)(s), λ)

is A-equivalent to the germ of the following form:

(b) (s, λ) 7→
((
ãs2 + b̃s3 + ϕ1(s)

) (
s2 ± n(0) · P (λ)

)
, s2 ± n(0) · P (λ), λ

)
.

Furthermore, by the Malgrange preparation theorem and Theorem 3, a map-germ of the form
mentioned in (b) must be A-equivalent to the map-germ g±k (s, λ) =

(
s3(s2 ± λk+1), s2, λ

)
. 2
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The “only if” parts of assertions 2 and 3 of Theorem 2 can be proved as follows. Put g̃(s, λ) =
s2, g̃0(s, λ) = s4 + λs2, g̃±2i+1(s, λ) = s4 ± λ2i+2s2, and g̃+2i(s, λ) = s4 + λ2i+1s2. Then, it can be

clearly seen that any two distinct elements of the following set are not KT -equivalent.{
g̃, g̃0, g̃

+
1 , g̃

−
1 , g̃

+
2 , g̃

+
3 , g̃

−
3 , · · ·

}
.

Hence, by Theorem 3, any two distinct elements of the set of the cuspidal edge, cuspidal cross-
cap, cuspidal S+

1 , cuspidal S−1 , cuspidal S+
2 , cuspidal S+

3 , cuspidal S−3 · · · are not A-equivalent.
Furthermore, by Theorem 3 and the form of g0, g

±
1 , g

±
2 , · · · in Table 2, the following adjacency

diagram is obtained.

(c) · · · −→ cuspidal Sk −→ · · · −→ cuspidal S1 −→ cuspidal S0.

Proof of “only if” parts of the assertions 2, 3 of Theorem 2.
As in the proof of the “only if” parts of assertions 2 and 3 of Theorem 1, we suppose that Un-

pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to cuspidal S±k (k ≥ 0), P (0) ∈ En(0) − {r(0)},
and P does not have (k + 1)-point contact with En(0) at 0 ∈ J . Then, by the “if” parts of
assertions 2, 3 of Theorem 2, for any non-negative integer `, P does not have (` + 1)-point
contact with En(0) at 0 ∈ J . In particular, for any non-negative integer `, there exists a C∞

immersion P̃ : J → S2 such that P̃ is sufficiently near P under the Whitney C∞ topology,

and P̃ has (` + 1)-point contact with En(0) at 0 ∈ J . Hence, it can be concluded that cuspidal

S±k singularity is adjacent to cuspidal S±` singularity for any positive integer `; however, this
contradicts diagram (c).

Next, suppose that Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to cuspidal S±k
(k ≥ 0) and P (0) = {r(0)}. In this case, the tangent cone of n(I) at n(0) coincides with
EP . Thus, by Lemma 2.4, j2(Un-pedr,P )(0) is not A2-equivalent to j2g±k (0); this contradicts
the assumption that Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the map-germ
g±k (s, λ) = (s5 ± λk+1s3, s2, λ). 2

Remarks
It is possible to adopt the criteria given in [16] or an argument similar to that given in [7] to
prove Theorems 1 and 2. However, the criteria in [16] are too general to be directly applied to
our study, and the argument in [7] seems to be somewhat ad hoc. Thus, in order to apply them
to our study, considerable preliminary work is required, the proofs of which are time-consuming
and complicated. On the other hand, Theorem 3 is the most suitable criterion for our study.
Moreover, the calculations with respect to KT -equivalence are relatively straightforward; hence,
by using Theorem 3, we can prove both Theorem 1 and Theorem 2 in a coherent and unified
manner.
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