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GEOMETRY OF IRREDUCIBLE PLANE QUARTICS AND THEIR

QUADRATIC RESIDUE CONICS

HIRO-O TOKUNAGA

Dedicated to Professor Du Plessis on his sixtieth birthday.

Abstract. Let D be an irreducible plane curve in P2. In this article, we first introduce a notion
of a quadratic residue curve modD, and study quadratic residue conics C mod an irreducible
quartic curve Q. As an application, we study a dihedral cover of P2 with branch locus C +Q

and give two examples of Zariski pairs as by-products.

Introduction
In this article, we study the geometry of irreducible plane quarticQ and a smooth conic C which

is tangent to Q with even order at each point in C ∩Q. The geometry of a smooth plane quartic
and its bitangent lines is a classical object and well studied by many mathematicians from various
points of view. We hope that this article adds another interesting topic to geometry of plane
quartics. All varieties throughout this paper are defined over the field of complex numbers, C. In
order to explain our motivation and results on the above subject, let us start with introducing
some notions and definitions.

Let Σ be a smooth projective surface. Let f ′ : Z ′ → Σ be a double cover of Σ, i.e., Z ′ is a normal
surface and f ′ is a finite surjective morphism of degree 2. We denote its canonical resolution by
µ : Z → Z ′ (see [7] for the canonical resolution). Note that µ is the identity if Z ′ is smooth. We
put f := f ′ ◦ µ. We denote the involution on Z induced by the covering transformation of f ′ by
σf . The branch locus ∆f ′ of f ′ is the subset of Σ consisting of points x such that f ′ is not locally
isomorphic over x. Similarly we define the branch locus ∆f of f . Note that ∆f ′ = ∆f .

Definition 0.1. Let D be an irreducible curve on Σ. We call D a splitting curve with respect to
f if f∗D is of the form

f∗D = D+ +D− + E,

where D+ ̸= D−, σ∗
fD

+ = D−, f(D+) = f(D−) = D and Supp(E) is contained in the exceptional
set of µ. If the double cover f : Z → Σ is determined by its branch locus ∆f , i.e., any double
cover with branch locus ∆f is isomorphic to Z ′ over Σ, and D is a splitting curve with respect to
f , we say that “∆f is a quadratic residue curve mod D”.

Remark 0.1.

• Note that if Σ is simply connected, then any double cover of Σ is determined by its branch
locus.

• In our previous results on dihedral covers and their application to the study of the topology
of the complements of plane curves, we see that splitting curves play important roles and
that it is indispensable to know their properties of them. (see [2], [17], [18], for example).
This is our first motivation to study splitting curves.

• Our terminology comes from elementary number theory. Let m be a square free positive
integer, let p be an odd prime with p ̸ |m and let OQ(

√
m) be the integer ring of Q(

√
m). It
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is well known that the ideal (p) generated by p in OQ(
√
m) satisfies the following properties

(See [8, Proposition 13.1.3], p.190, for example):
– If m is a quadratic residue mod p, then (p) = p1p2, where pi (i = 1, 2) are distinct

prime ideals.
– If m is not a quadratic residue mod p, then (p) is a prime ideal.

Suppose that f : Z → Σ is uniquely determined by ∆f . Likewise the Legendre symbol in
elementary number theory, we here introduce a notation to describe if ∆f is a quadratic residue
mod D or not. For an irreducible curve D on Σ, we put

(∆f/D) =

{
1 if ∆f is a quadratic residue curve mod D
−1 if ∆f is not a quadratic residue curve mod D

As P2 is simply connected, any double cover of P2 is just determined by its branch locus. On
the other hand, any reduced plane curve B of even degree can be the branch locus of a double
cover. Hence for any irreducible plane curve D, one can consider (B/D).

In this article, we consider the case when any point x ∈ B ∩D is a smooth point of both B and
D. For such a case, if the intersection multiplicity at some point in B ∩D is odd, then we infer
that (B/D) = −1. This leads us to introduce a notion of even tangential curve.

Definition 0.2. Let D1 and D2 are reduced divisors on a smooth projective surface without any
common irreducible component. We say that D1 and D2 are even tangential or D1 (resp. D2) is
even tangential to D2 (resp. D1) if

(i) For ∀P ∈ D1 ∩D2, P ̸∈ Sing(D1) ∪ Sing(D2), and
(ii) the intersection multiplicity of D1 and D2 at P , IP (D1, D2), is even for ∀P ∈ D1 ∩D2.

Note that we do not pay attention to ♯(D1 ∩D2) to define even tangential curves.

Now our basic problem can be formulated as follows:

Problem 0.1. Let B be a reduced plane curve of even degree.

(i) Find an even tangential curve D to B and determine the value of (B/D).
(ii) What can we say about the topology of P2 \ (B +D) from the value of (B/D)?

As a first step, we consider the case when B is a smooth conic C. Suppose that D is an
irreducible plane curve which is even tangential to C. We easily see the following:

• If degD = 1, 2, we have (C/D) = 1.
• If degD = 3, we have

(i) (C/D) = −1 if D is smooth, and
(ii) (C/D) = 1 if D is a nodal cubic.
Note that there is no even tangential cuspidal cubic to C.

Hence the case of degD = 4 seems to be the first interesting case. Now let us restate our exact
problems which we consider in this article:

Problem 0.2. Fix an irreducible quartic Q.

(i) Find even tangential conics C to Q and determine the value (C/Q).
(ii) Does the value (C/Q) affect the topology of P2 \ (C +Q)?

In this article, we first consider Problem 0.2 (i) and give a formula to determine (C/Q) (see
Theorem 2.1). We next count the number of even tangential conics passing through a smooth
point x on Q. Now our result is as follows:

Theorem 0.1. Choose a smooth point x of Q and let lx be the tangent line to Q at x. There exist
finitely many (possibly no) even tangential conics C to Q through x and we have the following
table:



172 HIRO-O TOKUNAGA

• ΞQ: the set of types of singularities of Q. Note that Q has at worst simple singularities
and we use the notation in [3] in order to describe the type of a singularity.

• lx ∩Q: This shows how lx meets Q. We use the following notation to describe it.
– s: Ix(lx, Q) = 2 or 3, and lx meets Q transversely at other point(s).
– b: lx is either bitangent line through x or Ix(lx, Q) = 4.
– sb: Ix(lx, Q) = 2 and lx passes through a double point of Q.

• ETC: the set of even tangential conics passing through x and ♯ETC denotes its cardinality.
• QRETC: the set of even tangential conics passing through x with (C/Q) = 1 and ♯QRETC
denotes its cardinality.

• We omit cases of (ΞQ, lx∩Q) which do not occur. For example, the case of (ΞQ, lx∩Q) =
(A6, b) is omitted, as such a case does not occur.

No. ΞQ lx ∩Q ♯ETC ♯QRETC
1 A6 s 0 0
2 A6 sb 0 0
3 E6 s 0 0
4 E6 b 0 0
5 A5 s 1 1
6 A5 b 1 1
7 A5 sb 0 0
8 D5 s 1 1
9 D5 b 0 0
10 D4 s 3 3
11 D4 b 0 0
12 A4 +A2 s 0 0
13 A4 +A2 sb 0 0
14 A4 +A1 s 0 0
15 A4 +A1 b 0 0
16 A4 +A1 sb 0 0
17 A4 +A1 sb 0 0
18 A3 +A2 s 1 1
19 A3 +A2 sb 0 0
20 A3 +A2 sb 1 1
21 A3 +A1 s 2 2
22 A3 +A1 b 1 1
23 A3 +A1 sb 1 1
24 A3 +A1 sb 0 0
25 3A2 s 0 0
26 3A2 b 0 0
27 2A2 +A1 s 0 0
28 2A2 +A1 b 0 0
29 2A2 +A1 sb 0 0
30 A2 + 2A1 s 1 1
31 A2 + 2A1 b 0 0
32 A2 + 2A1 sb 0 0
33 A2 + 2A1 sb 1 1
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No. ΞQ lx ∩Q ♯ETC ♯QRETC
34 3A1 s 4 4
35 3A1 b 1 1
36 3A1 sb 2 2
37 A4 s 3 0
38 A4 b 1 0
39 A4 sb 1 0
40 A3 s 7 1
41 A3 b 2 0
42 A3 sb 4 1
43 2A2 s 3 0
44 2A2 b 3 0
45 2A2 sb 1 0
46 A2 +A1 s 6 0
47 A2 +A1 b 3 0
48 A2 +A1 sb 3 0
49 A2 +A1 sb 2 0
50 2A1 s 13 1
51 2A1 b 6 0
52 2A1 sb 7 1
53 A2 s 15 0
54 A2 b 6 0
55 A2 sb 10 0
56 A1 s 30 0
57 A1 b 15 0
58 A1 sb 20 0
59 ∅ s 63 0
60 ∅ b 36 0

Note that there exist both quadratic and non-quadratic residue even tangential conics to Q for
the cases 40, 42, 50 and 52. These cases are interesting when we consider Problem 0.2 (ii). In
fact, we study dihedral covers of P2 whose branch loci are C + Q, and have the following result
(see §3 for the notations on dihedral covers):

Theorem 0.2. Let Q be an irreducible quartic, let C be an even tangential conic to Q and let
fC : ZC → P2 be a double cover with ∆fC = C. If there exists a D2p-cover π : S → P2 with
∆π = C +Q for an odd prime p ≥ 5, then we have the following:

(i) D(X/P2) = ZC
∼= P1 × P1, i.e., π is branched at 2C + pQ.

(ii) (C/Q) = 1. Moreover, if we put f∗
CQ = Q+ +Q−, then Q+ ∼ Q− ∼ (2, 2).

Conversely, if the second condition holds, then there exist D2n-covers πn : Sn → P2 branched
at 2C + nQ for any n ≥ 3.

Since both of degC and degQ are even, we infer that there exists a (Z/2Z)⊕2-cover of P2 with
branch locus C +Q. Hence, from Theorem 0.2, we have the following corollaries:

Corollary 0.1. If there exists a D2p-cover of P2 with ∆π = C + Q for some odd prime p ≥ 5,
then there exists a D2n-cover P2 with ∆π = C +Q for any n ≥ 2.
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Corollary 0.2. (i) Let p be an odd prime ≥ 5. If there exists an epimorphism from the funda-
mental group π1(P2 \ (C +Q), ∗) to D2p, then (C/Q) = 1 and Q+ ∼ Q−.

(ii) If there exists an epimorphism π1(P2 \(C+Q), ∗) to D2p, then there exists an epimorphism
π1(P2 \ (C +Q), ∗) to D2n for any n ≥ 2.

This paper consists of 5 sections. In §1, we start with preliminaries on theory of elliptic surface.
We prove Theroem 0.1 in §2. In §3, we give a summary on branched Galois covers, mainly dihedral
covers. We prove Theorem 0.2 in §4. In §5, we consider an application of Theorem 0.2 and give
two examples of Zariski pairs.

Acknowledgement. Most of this article was written during the author’s visit to Ruhr Uni-
versität Bochum under the support of SFB/TR 12. The author thanks Professor A. Huckleberry
for his arrangement and hospitality. The author also thanks the organizers of the symposium
“Singularities in Aarhus” for giving the author an opportunity to give a talk on the subject in
this article. Finally he thanks the referee for valuable comments on the first version of this article.

1. Preliminaries on elliptic surfaces

1.1. Elliptic surfaces. We review some general facts on elliptic surfaces. For details, we refer
to [9], [10] and [14]. Let φ : E → C be an elliptic surface over a smooth projective curve C with
a section O. Throughout this article, we always assume that

(i) φ is relatively minimal and
(ii) there exists at least one singular fiber.

Let NS(E) be the Néron-Severi group of E and let Tφ be the subgroup of NS(E) generated by
O and all the irreducible components of fibers of φ. Tφ has a canonical basis as follows:

O, a general fiber f, and {Θv,1, . . . ,Θv,mv−1}v∈Rφ , where

• Rφ := {v ∈ C | φ−1(v) is reducible.}, and
• we label the irreducible components of φ−1(v) as follows: Θv,0,Θv,1, . . . ,Θv,mv−1, Θv,0O =
1.

Let MW(E) be the Mordell-Weil group, the group of sections, of E , O being the zero sections.
Under these circumstances, we have

Theorem 1.1. [14, Theorem 1.3] There is a natural isomorphism

MW(E) ∼= NS(E)/Tφ.

Also in [14], a symmetric bilinear form ⟨ , ⟩, called the height pairing, on MW(E) is defined by
using the intersection pairing as follows:

For any s ∈ MW(E), ⟨s, s⟩ ≥ 0 and = 0 if and only if s is a torsion. More explicitly, for
s1, s2 ∈ MW(E), ⟨s1, s2⟩ is given by

⟨s1, s2⟩ = χ(OE) + s1O + s2O − s1s2 −
∑
v∈Rφ

Corrv(s1, s2),

where Corrv(s1, s2) is given by

Corrv(s1, s2) = (s2Θv,1, . . . , s2Θv,mv−1)(−A−1
v )

 s1Θv,1

·
s1Θv,mv−1

 ,

and Av is the intersection matrix (Θv,iΘv,j) (1 ≤ i, j ≤ mv − 1). As for explicit values of
Corrv(s1, s2), see Table 8.16 in [14].
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1.2. A “reciprocity” between sections and trisections on rational ruled surfaces. Let
Σd be the Hirzebruch surface of degree d (d: even positive integer). We denote its section with
self-intersection number −d and its fiber of the ruling by ∆0,d and Fd, respectively. Let Γd be an
irreducible curve on Σd such that

(1) Γd ∼ 3(∆0,d + dFd) and
(2) Γd has at worst simple singularities.

Let ∆ be a section on Σd such that (i) ∆ ∼ ∆0,d + dFd and (ii) ∆ and Γd are even tangential.

Let p′d : S′
d → Σd be the double cover with branch locus ∆0,d + Γd and µd : Sd → S′

d be the
canonical resolution and put pd := p′d ◦ µd. Since ∆0,d + Γd meets a general fiber Fd

∼= P1 in 4
distinct points, one can easily see that Sd has an elliptic fibration φd : Sd → P1 over P1. Moreover,
by its construction, we infer that

(a) φd is relatively minimal,
(b) the preimage of ∆0,d gives a section which we denote by O, and
(c) ∆ gives rise to two sections s+∆ and s−∆ of φd.

Let MW(Sd) be the group of sections , the Mordell-Weil group, of φd, where O is the zero
element. Let qd : Wd → Σd be a double cover with branch locus ∆0,d + ∆. Note that qd is
uniquely determined by ∆0,d +∆ as Σd is simply connected and that Wd

∼= Σd/2. Then we have

Theorem 1.2.
((∆0,d +∆)/Γd)) = (−1)ε(s

+
∆)

where, for a section s ∈ MW(Sd), ε(s) is defined as follows:

ε(s) =

{
0 ∃so ∈ MW(Sd) such that s = 2so
1 ̸ ∃so ∈ MW(Sd) such that s = 2so

Note that ε(s+∆) = ε(s−∆) as s+∆ = −s−∆ on MW(Sd).

Proof. It is enough to show

((∆0,d +∆)/Γd)) = 1 ⇔ s±∆ ∈ 2MW(Sd).

(⇒) As we have seen, Wd
∼= Σd/2. We choose affine open subsets V ⊂ Wd(∼= Σd/2), and U ⊂ Σd

as follows:

(i) Both U and V are C2.
(ii) We choose affine coordinates (t, u) and (t̃, ζ) of U and V , respectively, in such a way that

qd is given by
qd : (t̃, ζ) 7→ (t, u) = (t̃, ζ2 + f(t)),

where f(t) is a polynomial of degree ≤ d. Note that with respect to these coordinates
(t, u) and (t̃, ζ), ∆ ∩ U : u − f(t) = 0, ∆0,d corresponds to the section given by u = ∞
and the involution σqd is given by (t̃, ζ) 7→ (t̃,−ζ).

Since ((∆0,d+∆)/Γd) = 1, q∗dΓd is of the form Γ++Γ−. Since σ∗
qd
Γ+ = Γ−, σ∗

qd
∆0,d/2 = ∆0,d/2

and σ∗
qd
Fd/2 = Fd/2, Γ

+ ∼ Γ− ∼ 3(∆0,d/2 + d/2Fd/2). Hence we may assume

Γ+ : F (t̃, ζ) = ζ3 + a1(t̃)ζ
2 + a2(t̃)ζ + a3(t̃) = 0

Γ− : −F (t̃,−ζ) = ζ3 − a1(t̃)ζ
2 + a2(t̃)ζ − a3(t̃) = 0,

where deg ak(t̃) ≤ kd/2. Since ζ2 = u− f(t), t = t̃, we have

F (t̃, ζ) = (a1(t)u− a1(t)f(t) + a3(t)) + (u− f(t) + a2(t))ζ.
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As q∗dΓ = Γ+ + Γ−, we may assume that Γd is given by

−F (t̃, ζ)F (t̃,−ζ) = (a1(t)u− a1(t)f + a3(t))
2 − (u− f(t) + a2(t))

2(u− f(t)) = 0.

On the other hand, over U is S′
d is given by

S′
d|p′

d
−1 : y2 = (a1(t)u− a1(t)f + a3(t))

2 − (u− f(t) + a2(t))
2(u− f(t)),

and the above equation considered as a Weierstrass equation of the generic fiber, Sd,η, of φd. By
our construction, s±∆ is given by

s±∆ : (f(t),±a3(t)).

Put

s±o : (∓(f(t)− a2(t)),±(a1(t)a2(t)− a3(t)).

Then s±o ∈ MW(Sd) and by the definition of the group law, we have

2s±o = s±∆.

(⇐) We use the affine open subsets of Σd and Wd as before. Suppose that Γd is given by

Γd : FΓd
(t, u) = u3 + c1(t)u

2 + c2(t)u+ c3(t) = 0

where ck(t)(i = 1, 2, 3) are polynomials of degrees ≤ kd. Then S′
d over U is given by y2 = FΓd

(t, u)
and, as we have seen, this equation can be regarded as a Weierstrass equation of the generic fiber
Sd,η. Since s+∆O = 0 and pd(s

+
∆) = ∆, s+∆ ∈ MW(Sd) is given by

s+∆ : (u, y) = (f(t), g(t)),

where g(t) is a polynomial of degree ≤ 3d/2. Let so ∈ MW(Sd) such that 2so = s+∆. Since so is a
C(P1)(= C(t))-rational point of Sd,η, there exist fo(t), go(t) ∈ C(t) such that

so : (u, y) = (fo(t), go(t)).

Since s+∆O = 0, by [9, Theorem 9.1], we infer that soO = 0. Therefore fo(t), go(t) ∈ C[t] and
deg fo ≤ d,deg go ≤ 3d/2. Now let

y = α(t)u+ β(t), α(t), β(t) ∈ C(t)

be the tangent line of the elliptic curve Sd,η over C(t) at so. By the definition of the group law
on Sd,η, we have

F (t, u) = (α(t)u+ β(t))2 + (u− fo(t))
2(u− f(t)).
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As F (t, u), f, fo ∈ C[t, u], we infer that α(t), β(t) ∈ C[t]. Thus we may assume that Γd ∩ U is
given by

(α(t)u+ β(t))2 + (u− fo(t))
2(u− f(t)) = 0.

As q∗dΓd on V is given by

(α(t)u+ β(t))2 + (u− fo(t))
2ζ2

= {(α(t)u+ β(t)) +
√
−1(u− fo(t))ζ} × {(α(t)u+ β(t))−

√
−1(u− fo(t))ζ},

Γd is splitting with respect to qd, i.e., ((∆0,d +∆)/Γd) = 1. �

Remark 1.1. Theorem 1.2 can be generalized to the case when Sd has a hyperelliptic fibration
under some restriction. See [19].

1.3. Double covers of P2 branched along quartics and rational elliptic surfaces. An
elliptic surface E is said to be rational, if E is a rational surface. Hence it is an elliptic surface
over P1. Analogously to [17], we associate a rational elliptic surface EQ

x to a reduced quartic Q in
P2 with a distinguished smooth point x ∈ Q as follows:

Let ν1 : P2
x → P2 be a blowing-up at x. We denote the proper transform of the tangent line

lx at x by lx,1, and the exceptional curve of ν1 by Ex,1. We next consider another blowing up

ν2 : P̂2 → P2
x at lx,1 ∩ Ex,1, and denote the proper transforms of lx,1, Ex,1 and the exceptional

curve of ν2 by lx, Ex,1, and Ex,2, respectively. Let f ′ : E ′ → P̂2 be a double cover with branch

locus Ex,1 and Q, where Q is the proper transform of Q with respect to ν2 ◦ν1. Let µQ
x : EQ

x → E ′

be the canonical resolution of E ′ and put fQ
x := f ′◦µQ

x . Then we see that EQ
x satisfies the following

properties:

(i) The pencil Λx of lines through x induces a relatively minimal elliptic fibration φQ
x : EQ

x →
P1.

(ii) The preimage of Ex,1 gives rise to a section O of φQ
x , and the generic fiber has a group

structure, O being the zero element. Moreover the covering transformation of EQ
x coincides

with the involution induced by the inversion of the group law.
(iii) The preimages of Ex,2 and lx in EQ

x are irreducible components of singular fibers. The

types of the singular fiber cointainig the preimages of Ex,2 and lx are as follows:

I2 lx meets Q at x and at another two distinct points.
III lx is a 3-fold tangent point.
I3 lx is a bitangent line.
IV lx is a 4-fold tangent point.

In (n ≥ 4) lx passes through a singular point of type An(n ≥ 1).

We use here Kodaira’s notation ([9]) in order to describe the types of singular fibers.
The following picture describes the case that lx is a 3-fold tangent line at x.
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Q

lx

ν1 ◦ ν2 Ex,1

lx

Q

Ex,2

fQ
x

fQ
x

−1
(Q)

(iv) Other singular fibers of EQ
x correspond to lines in Λx not meeting Q at 4 distinct points.

We refer to [11, Table 6.2] for details.

Remark 1.2. Note that any rational elliptic surface E with at least one reducible singular fiber
is obtained above. Namely E = EQ

x for some Q and a smooth point x on Q.

1.4. The Mordell-Weil lattices of EQ
x . In this subsection, we give a table of types of singu-

larities of Q, the relative position of lx and Q, and the Mordell-Weil lattices of EQ
x . We first note

that MW(EQ
x ) has no 2-torsion, since we assume that Q is irreducible. Also we omit cases which

never occur. As for the structure of the Mordell-Weil lattices for rational elliptic surfaces, we refer
to [12] and to [15] for the correction of the misprints in [12]. Let us explain notations used in the
table.

• ΞQ and lx ∩Q are the same as those in the table Theorem 0.1
• RQ,x: the subgroup of NS(EQ

x ) generated by {Θv,1, . . . ,Θv,mv−1}v∈R
φ
Q
x

. Note that RQ,x is

isomorphic to a direct sum of root lattices of A-D-E type, and we describe RQ,x as a direct sum
of them.

• MW(EQ
x ): the lattice structure of MW(EQ

x ). To describe them, we use the notation in [12].
Namely •∗ means the dual lattice of the lattice • and ⟨m⟩ denotes a lattice of rank 1, Zx with
⟨x, x⟩ = m. Also a matrix means the intersection matrix with respect to a certain basis. Note
that the lattice structure is determined by RQ,x as MW(EQ

x ) has no 2-torsion.

• MW0(EQ
x ): the narrow part of MW(EQ

x ), i.e., the subgroup of MW(EQ
x ) consisting of sections

s with sΘv,0 = 1.
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No. ΞQ lx ∩Q RQ,x MW(EQ
x ) MW0(EQ

x )
1 A6 s A6 ⊕A1 ⟨1/14⟩ ⟨14⟩
2 A6 sb A8 Z/3Z {0}
3 E6 s E6 ⊕A1 ⟨1/6⟩ ⟨6⟩
4 E6 b E6 ⊕A2 Z/3Z {0}
5 A5 s A5 ⊕A1 A∗

1 ⊕ ⟨1/6⟩ A1 ⊕ ⟨6⟩
6 A5 b A5 ⊕A2 A∗

1 ⊕ Z/3Z A1

7 A5 sb A7 ⟨1/8⟩ ⟨8⟩
8 D5 s D5 ⊕A1 A∗

1 ⊕ ⟨1/4⟩ A1 ⊕ ⟨4⟩
9 D5 b D5 ⊕A2 ⟨1/12⟩ ⟨12⟩
10 D4 s D4 ⊕A1 (A∗

1)
⊕3 A⊕3

1

11 D4 b D4 ⊕A2
1

6

(
2 1
1 2

) (
4 −2
−2 4

)
12 A4 +A2 s A4 ⊕A2 ⊕A1 ⟨1/30⟩ ⟨30⟩
13 A4 +A2 sb A4 ⊕A4 Z/5Z {0}

14 A4 +A1 s A4 ⊕A⊕2
1

1

10

(
2 1
1 3

) (
6 −2
−2 4

)
15 A4 +A1 b A4 ⊕A2 ⊕A1 ⟨1/30⟩ ⟨30⟩
16 A4 +A1 sb A4 ⊕A3 ⟨1/20⟩ ⟨20⟩
17 A4 +A1 sb A6 ⊕A1 ⟨1/14⟩ ⟨14⟩
18 A3 +A2 s A3 ⊕A2 ⊕A1 A∗

1 ⊕ ⟨1/12⟩ A1 ⊕ ⟨12⟩
19 A3 +A2 sb A4 ⊕A3 ⟨1/20⟩ ⟨20⟩
20 A3 +A2 sb A5 ⊕A2 A∗

1 ⊕ Z/3Z A1

21 A3 +A1 s A3 ⊕A⊕2
1 (A∗

1)
⊕2 ⊕ ⟨1/4⟩ A⊕2

1 ⊕ ⟨4⟩
22 A3 +A1 b A3 ⊕A2 ⊕A1 A∗

1 ⊕ ⟨1/12⟩ A1 ⊕ ⟨12⟩
23 A3 +A1 sb A5 ⊕A1 A∗

1 ⊕ ⟨1/6⟩ A1 ⊕ ⟨6⟩
24 A3 +A1 sb A3 ⊕A3 ⟨1/4⟩⊕2 ⟨4⟩⊕2

25 3A2 s A⊕3
2 ⊕A1 ⟨1/6⟩ ⊕ Z/3Z ⟨6⟩

26 3A2 b A⊕4
2 (Z/3Z)⊕2 {0}

27 2A2 +A1 s A⊕2
2 ⊕A⊕2

1 ⟨1/6⟩⊕2 ⟨6⟩⊕2

28 2A2 +A1 b A⊕3
2 ⊕A1 ⟨1/6⟩ ⊕ Z/3Z ⟨6⟩

29 2A2 +A1 sb A4 ⊕A2 ⊕A1 ⟨1/30⟩ ⟨30⟩
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No. ΞQ lx ∩Q RQ,x MW(EQ
x ) MW0(EQ

x )

30 A2 + 2A1 s A2 ⊕A⊕3
1 A∗

1 ⊕
1

6

(
2 1
1 2

)
A1 ⊕

(
4 −2
−2 4

)
31 A2 + 2A1 b A⊕2

2 ⊕A⊕2
1 ⟨1/6⟩⊕2 ⟨6⟩⊕2

32 A2 + 2A1 sb A4 ⊕A⊕2
1

1

10

(
2 1
1 3

) (
6 −2
−2 4

)
33 A2 + 2A1 sb A3 ⊕A2 ⊕A1 A∗

1 ⊕ ⟨1/12⟩ A1 ⊕ ⟨12⟩
34 3A1 s A⊕4

1 (A∗
1)

⊕4 A⊕4
1

35 3A1 s A2 ⊕A⊕3
1 A∗

1 ⊕
1

6

(
2 1
1 2

)
A1 ⊕

(
4 −2
−2 4

)
36 3A1 sb A3 ⊕A⊕2

1 (A∗
1)

⊕2 ⊕ ⟨1/4⟩ A⊕2
1 ⊕ ⟨4⟩

37 A4 s A4 ⊕A1
1
10

 3 1 −1
1 7 3
−1 3 7

  4 −1 1
−1 2 −1
1 −1 2


38 A4 b A4 ⊕A2

1
15

(
2 1
1 8

) (
8 −1
−1 2

)
39 A4 sb A6

1
7

(
2 1
1 4

) (
4 −1
−1 2

)
40 A3 s A3 ⊕A1 A∗

3 ⊕A∗
1 A3 ⊕A1

41 A3 b A3 ⊕A2
1
12

 7 1 2
1 7 2
2 2 4

  2 0 −1
0 2 −1
−1 −1 4


42 A3 sb A5 A∗

2 ⊕A∗
1 A2 ⊕A1

43 2A2 s A⊕2
2 ⊕A1 A∗

2 ⊕ ⟨1/6⟩ A2 ⊕ ⟨6⟩
44 2A2 b A⊕3

2 A∗
2 ⊕ Z/3Z A2

45 2A2 sb A4 ⊕A2
1
15

(
2 1
1 8

) (
8 −1
−1 2

)

46 A2 +A1 s A2 ⊕A⊕2
1

1
6


2 1 0 −1
1 5 3 1
0 3 6 3
−1 1 3 5




4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2


47 A2 +A1 b A⊕2

2 ⊕A1 A∗
2 ⊕ ⟨1/6⟩ A2 ⊕ ⟨6⟩

48 A2 +A1 sb A4 ⊕A1
1
10

 3 1 −1
1 7 3
−1 3 7

  4 −1 1
−1 2 −1
1 −1 2


49 A2 +A1 sb A4 ⊕A1

1
12

 7 1 2
1 7 2
2 2 4

  2 0 −1
0 2 −1
−1 −1 4


50 2A1 s A⊕3

1 D∗
4 ⊕A∗

1 D4 ⊕A1

51 2A1 b A2 ⊕A⊕2
1

1
6


2 1 0 −1
1 5 3 1
0 3 6 3
−1 1 3 5




4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2


52 2A1 sb A3 ⊕A1 A∗

3 ⊕A∗
1 A3 ⊕A1
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No. ΞQ lx ∩Q RQ,x MW(EQ
x ) MW0(EQ

x )
53 A2 s A2 ⊕A1 A∗

5 A5

54 A2 b A⊕2
2 (A∗

2)
⊕2 A⊕2

2

55 A2 sb A4 A∗
4 A4

56 A1 s A⊕2
1 D∗

6 D6

57 A1 b A2 ⊕A1 A∗
5 A5

58 A1 sb A3 D∗
5 D5

59 ∅ s A1 E∗
7 E7

60 ∅ b A2 E∗
6 E6

2. Proof of Theorem 0.1

We keep the same notations as before. Our result will be proved case-by-case. Let us start
with the following lemma.

Lemma 2.1. Let C be an even tangential conic to Q through x. The preimage of C in EQ
x consists

of two sections s+C and s−C such that

(i) ⟨s+C , s
+
C⟩ = ⟨s−C , s

−
C⟩ = 2

(ii) s+CO = s−CO = 0

(iii) s+CΘv,0 = s−CΘv,0 = 1 for all v ∈ RφQ
x
, i.e, s±C ∈ MW0(EQ

x ).

Coversely, for any section s in MW(EQ
x ) satisfying two of the above three properties, the image

of s in P2 is an even tangential conic to Q.

Proof. We first note that two of the properties (i), (ii) and (iii) imply the remaining. This follows
from the formula

⟨s, s⟩ = 2 + 2sO −
∑
v∈Rφ

Corrv(s, s)

for the rational elliptic surface EQ
x and s ∈ MW(EQ

x ).

Let C be the proper transform of C in P̂2. Since C is tangent to Q at each intersection point
and C∩Ex,1 = ∅, the preimage of C in EQ

x consists of 2 irreducible components s+C and s−C so that

s±CO = 0. Since C meets the proper transform of a general member in Λx at one point, both s+C
and s−C are sections of φQ

x : EQ
x → P1. The property (iii) follows from the fact that C meets Ex,2

and C does not pass through singularities of Q. Now the property (i) is straightforward from the
explicit formula for ⟨ , ⟩.

Conversely, suppose that we have a section s satisfying two of the properties (i), (ii) and (iii).
Let Cs be the image of s in P2. By our construction of EQ

x , we infer that Cs is a conic tangent to
Q at x. Since Cs is also the image of σ∗

fQ
x
s, we infer that Cs is an even tangent conic to Q. �

Theorem 2.1. Let C be an even tangential conic to Q and let s+C be the section as above.

(C/Q) = (−1)ε(s
+
C),

where the symbol ε(s+C) is the same as that defined in Theorem 1.2.

Proof. Let P̂2 as before. Since lx is a (−1) curve, by blowing down lx, we obtain Σ2 with the
following properties:

(i) The image of Q is a trisection ΓQ ∼ 3(∆0,d + 2F ).
(ii) Singularities of ΓQ are the same as those of Q except the A1 singularity caused by blowing

down lx.
(iii) The image of Ex,1 = ∆0,d.
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(iv) The image of C is a section ∆C such that ∆C ∼ (∆0,d + 2F ) and ∆C is even tangent to
ΓQ.

Let fo : Zo → Σ2 be the induced double cover by fC : ZC → P2, i.e., the C(ZC)-normalization
of Σ2. One easily see that ∆fo = ∆+∆C .

ZC EQ
x Zo

P2 P̂2 Σ2

? ? ?
� -

Since ∆C is the image of C, it is also the image of s±C . Hence we infer that

(C/Q) = 1 ⇔ (∆0,d +∆C/ΓQ) = 1.

Hence by Theorem 1.2, we infer that (C/Q) = 1 if and only if s+C ∈ 2MW(EQ
x ). �

Remark 2.1. Suppose that s+C ∈ 2MW(EQ
x ). Let so be an element in MW(EQ

x ) such that

2so = s+C . By Lemma 2.1 (i), we have ⟨so, so⟩ = 1/2. Hence if MW(EQ
x ) has no section s with

⟨s, s⟩ = 1/2, there is no quadratic residue even tangential conic to Q through x.

Lemma 2.2. Let Q̃ be the normalization of Q and we denote the genus of Q̃ by g(Q̃).

(i) No even tangential conic to Q is quadratic residue modQ if g(Q̃) ≥ 2.

(ii) All even tangential conic to Q are quadratic residue modQ if g(Q̃) = 0.

Proof. (i) Let C be an even tangential conic to Q and suppose that (C/Q) = 1. Let fC : ZC → P2

be a double cover with ∆fC = C. Then f∗
CQ is of the form Q+ + Q−. Since ZC = P1 ×

P1,Pic(ZC) ∼= Z ⊕ Z and the covering transformation induces an involution (a, b) 7→ (b, a) on
Pic(ZC), we infer that Q+ ∼ Q− ∼ (2, 2). Since Q+, Q− and Q are birationally equivalent, we

have g(Q̃) ≤ 1 and the result follows.

(ii) Since the induced double cover on Q̃ is unramified, (C/Q) = 1. �
Now we easily have the following theorem:

Theorem 2.2. Let Q be an irreducible quartic. Choose a smooth point x ∈ Q and let EQ
x be the

rational elliptic surface as in §1. Then we have the following:
(i) Let ETC be the set of conics passing through x. Then

♯ETC = ♯{s ∈ MW(EQ
x ) | ⟨s, s⟩ = 2, sO = 0}/2

= ♯{s ∈ MW0(EQ
x ) | ⟨s, s⟩ = 2}/2

(ii) Let QRETC be the set of even tangential conics passing through x with (C/Q) = 1. Then

♯QRETC = ♯{s ∈ 2MW(EQ
x ) | ⟨s, s⟩ = 2, sO = 0}/2

= ♯{s ∈ 2MW(EQ
x ) ∩MW0(EQ

x ) | ⟨s, s⟩ = 2}/2

Proof. Our statements (i) and (ii) are immediate from Lemma 2.1 and Theorem 2.1. �
We now prove Theorem 0.1 case-by-case. We first compute ♯ETC. By Lemma 2.1, it is enough

to see the number of sections s in the narrow part MW0(EQ
x ) of MW(EQ

x ) with ⟨s, s⟩ = 2.
For the lattices of A-D-E types, it is nothing but the number of roots, and the following table

is well known (see [6])

An Dn (n ≥ 4) E6 E7

n(n+ 1) 2n(n− 1) 72 126
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From the above table and that in §2, our statement on ♯ETC is straightforward except for the
cases 11, 14, 30, 32, 35, 37, 38, 39, 41, 45, 46, 48, 49, 51. For the rank 2 cases among the exceptional
cases, our statement follows easily by direct computation. For the cases of rank > 2, we make use
of [12, Lemma 3.8], which is as follows: 4 −1 1

−1 2 −1
1 −1 2

 ∼= A⊥
1 in A4,


4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2

 ∼= A⊥
1 in A5

 2 0 −1
0 2 −1
−1 −1 2

 ∼= A⊥
2 in D5

where the terminology •⊥ in � means that we embed a lattice • into � and •⊥ is the orthogonal
complement of • in �. Also, by [12, Lemma 3.8], the embedding is determined up to isomorphism.
Hence we just count the number of roots which are orthogonal to the embedded lattices. To be
more precise, we explain the case A⊥

1 in A5. We first consider the realization of A5 as follows:

A5 = {(x1, . . . , x6) |
∑
i

xi = 0, xi ∈ Z} ⊂ R6

and the pairing is induced from the Euclidean metric
∑

i x
2
i in R6. Under these circumstances, the

roots are given by a vector (1,−1, 0, 0, 0, 0) and those obtained by permutations of the coordinates.
We fix an embedding of A1 given by Z(1,−1, 0, 0, 0, 0) ⊂ A5. Then roots in A⊥

1 are

(0, 0,±1,∓1, 0, 0) (0, 0,±1, 0,∓1, 0) (0, 0,±1, 0, 0,∓1)
(0, 0, 0,±1,∓1, 0) (0, 0, 0,±1, 0,∓1) (0, 0, 0, 0,±1,±1).

Since the remaining cases are similar, we omit them. Thus we have a list for ♯ETC.
We now go on to compute ♯QRETC. We first note that ♯QRETC = 0 if ♯ETC = 0. In the

following, we only cosider the case of ♯ETC ̸= 0.
Since Q is irreducible, MW(EQ

x ) has no 2-torsion. Hence for each s ∈ 2MW(EQ
x ), there exists a

unique so ∈ MW(EQ
x ) such that 2so = s. For distinct C1, C2 ∈ QRETC, s+C1

and s+C2
are distinct

in MW0(EQ
x ). Hence it is enough to compute

♯{so ∈ MW(EQ
x ) | ⟨so, so⟩ = 1/2, 2so ∈ MW0(EQ

x )}
Now Theorem 0.1 follows from the following claim:

Claim. Suppose that ♯ETC ≠ 0. If MW(EQ
x ) has an A∗

1 as a direct summand, then two
generators ±s̃ of A∗

1 are sections such that ⟨s̃, s̃⟩ = 1/2, 2s̃ ∈ MW0(EQ
x ). Conversely if there exists

so ∈ MW(EQ
x ) such that ⟨so, so⟩ = 1/2, 2so ∈ MW0(EQ

x ), then Zso(∼= A∗
1) is a direct summand of

MW(EQ
x ).

Proof of Claim. Suppose that A∗
1 is a direct summand of MW(EQ

x ) and let s̃ be a section such
that Zs̃ = A∗

1. Then ⟨s̃, s̃⟩ = 1/2 and 2s̃ ∈ MW0(EQ
x ) by [14, Theorem 9.1].

We now go on to show the converse. Let so be a section with ⟨so, so⟩ = 1/2, 2so ∈ MW0(EQ
x ).

As for the dual lattices of A-D-E type, we have the following table:

Type A∗
n D∗

n (n ≥ 4) E∗
6 E∗

7

Minimum norm n
(n+1) 1 4

3
3
2

Hence we easily see that MW(EQ
x ) has an A∗

1 direct summand except for the cases 37, 38, 39,
41, 45, 46, 48, 49 and 51. We see that there is no section s with ⟨s, s⟩ = 1/2 for these exceptional
cases.
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Cases 38, 39 and 45. In these cases, the paring ⟨ , ⟩ takes its value in 1/15Z (Cases 38 and 45),
and 1/7Z (Case 39), where 1/mZ = {a/m | a ∈ Z}. Hence there is no section s with ⟨s, s⟩ = 1/2.

Cases 37 and 48. Let s be any element of MW(EQ
x ). In these cases,

⟨s, s⟩ = 2(1 + sO)− k1(5− k1)

5
− 1

2
k2,

where k1 ∈ {0, 1, 2, 3, 4}, k2 ∈ {0, 1}. Hence we infer that there is no s with ⟨s, s⟩ = 1/2.

Cases 41 and 49. Let s be any element of MW(EQ
x ). In these cases,

⟨s, s⟩ = 2(1 + sO)− k1(4− k1)

4
− 2

3
k2,

where k1 ∈ {0, 1, 2, 3}, k2 ∈ {0, 1}. Hence we infer that there is no s with ⟨s, s⟩ = 1/2.

Cases 46 and 51. Let s be any element of MW(EQ
x ). In these cases,

⟨s, s⟩ = 2(1 + sO)− 2

3
k1 −

1

2
k2 −

1

2
k3,

where k1, k2, k3 ∈ {0, 1}. Hence we infer that there is no s with ⟨s, s⟩ = 1/2.

After checking each case we see that so generates an A∗
1 direct summand.

3. Preliminaries from theory of Galois covers

3.1. Galois covers. In this subsection, we summarize some facts and terminologies on Galois
covers. For details, see [1, §3]. Let X and Y be normal projective varieties. We call X a cover
if there exists a finite surjective morphism π : X → Y . Let C(X) and C(Y ) be rational function
fields of X and Y , respectively. If X is a cover of Y , then C(X) is an algebraic extension of C(Y )
with deg π = [C(X) : C(Y )]. Let G be a finite group. A G-cover is a cover π : X → Y such that
C(X)/C(Y ) is a Galois extension with Gal(C(X)/C(Y )) ∼= G. For a cover π : X → Y , the branch
locus ∆π of π is a subset of Y as follows:

∆π = {y ∈ Y | π is not locally isomorphic over y}.

If Y is smooth, ∆π is an algebraic subset of pure codimention 1 ([21]). Let π : X → Y be a G-cover
of a smooth projective variety Y . Let ∆π = ∆π,1+. . .+∆π,r denote the irreducible decomposition
of ∆π. We say that π : X → Y is branched at e1∆π,1 + . . . + er∆π,r(ei ≥ 2, i = 1, . . . , r) if the
ramification index along ∆π,i is ei for each i.

Let B be a reduced divisor on a smooth projective variety Y and B = B1 + . . . + Br denote
its irreducible decomposition. It is known that the existence of a G-cover π : X → Y at

∑
i eiBi

can be characterized as follows:

Theorem 3.1. There exists a G-cover of Y branched at
∑

i eiBi if and only if there exists an
epimorphism ϕ : π1(Y \ B, ∗) → G such that for each meridian γi of Bi, the image of its class
[γi], ϕ([γi]), has order ei.

3.2. Dihedral covers. Let D2n be the dihedral group of order 2n (n ≥ 3) given by ⟨σ, τ | σ2 =
τn = (στ)2 = 1⟩. In [17], we developed a method to deal with D2n-covers, and some variants of
the results in [17] have been studied since then. We summarize here some results which we need
later. Let us start with introducing some notation in order to explain them.

Let π : X → Y be a D2n-cover. By its definition, C(X) is a D2n-extension of C(Y ). Let C(X)τ

be the fixed field by τ . We denote the C(X)τ - normalization by D(X/Y ). We denote the induced
morphisms by β1(π) : D(X/Y ) → Y and β2(π) : X → D(X/Y ). Note that X is a Z/nZ-cover of
D(X/Y ) and D(X/Y ) is a double cover of Y such that π = β1(π) ◦ β2(π):
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X

D(X/Y )

Y
?

π

Q
QQs
β2(π)

�
��+ β1(π)

Generic D2n-covers. A D2n-covers π : S → Σ is said to be generic if ∆(π) = ∆(β1(π)). As
for conditions for the existence of generic D2n-covers with prescribed branch loci, we have the
following:

Let B be a reduced divisor on Σ with at worst simple singularities. Suppose that there exists a
double cover f ′

B : Z ′
B → Σ with branch locus B and let µB : ZB → Z ′

B be the canonical resolution.
We define the subgroup RB of NS(ZB) as follows:

RB := ⊕b∈Sing(B)Rb,

where Rb is the subgroup in NS(ZB) generated by the exceptional divisor of the singularity

f ′−1
B (x). Then we have the following result:

Theorem 3.2. [1, Theorem 3.27] Let p be an odd prime and suppose that ZB is simply connected.
There exists a generic D2p-cover π : S → Σ with branch locus B if and only if NS(ZB)/RB has
p-torsion.

Let R∨
b = HomZ(Rb,Z). Rb can be regarded as a subgroup of R∨

b by using the intersec-
tion pairing. Since the torsion subgroup of NS(ZB)/RB can be considered as a subgroup of
⊕b∈Sing(B)R

∨
b /Rb, we have the following corollary:

Corollary 3.1. If there exists no b such that p|♯(R∨
b /Rb), then there exists no generic D2p-cover

with branch locus B.

Non-generic D2n-covers. A D2n-cover is said to be non-generic if ∆(β1(π)) is a proper
subset of ∆(π). We consider a non-generic D2n-cover of Σ under the following setting:

Let B = B1 +B2 be a reduced divisor on Σ such that:

(i) there exists a double cover f ′
B1

: Z ′
B1

→ Σ with ∆f ′
B1

= B1, and

(ii) B2 is irreducible.

Let fB1 : ZB1 → Σ be the canonical resolution of Z ′
B1

.

Proposition 3.1. [1, Proposition 3.31] Suppose that Σ is simply connected and the preimage of
the strict transform of B2 consists of two distinct irreducible components B+

2 and B−
2 . If there

exist an effective divisor D and a line bundle L on ZB1
satisfying conditions

(i) D = B+
2 +D′; D′ and σ∗

fB1
D′ have no common components,

(ii) Supp(D′ + σ∗
fB1

D′) is contained in the exceptional set of µf ′
B1

and

(iii) D − σ∗
fB1

D ∼ nL (n ≥ 3), where ∼ denotes linear equivalence,

then there exists a D2n-cover π : S → Σ branched at 2B1 + nB2 such that ∆β1(π) = B1.

Corollary 3.2. If σ∗
fB1

B+
2 ∼ B−

2 and there exists a D2n-cover of Σ branched at 2B1 + nB2 for

any n ≥ 3.

Proposition 3.2. [1, Proposition 3.32] Under the notation above, if a D2n-cover π : S → Σ
branched at 2B1 + nB2 exists, then the following holds:
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(i) D(S/Σ) = Z ′
B1

. The preimage of the porper transform of B2 in ZB1
consists of two

irreducible components, B±
2 .

(ii) There exist effective divisors D1 and D2, and a line bundle L on ZB1 such that

• Supp(D1 + σ∗
fB1

D1 +D2) is contained in the exceptional set of µ,

• D1 and σ∗
fB1

D1 have no common components,

• if D2 ̸= ∅, then n is even, D2 is reduced, and D′ = σ∗
fB1

D′ for each irreducible component

D′ of D2, and
• (B+

2 +D1 +
n
2D2)− (B−

2 + σ∗
fB1

D1) ∼ nL.

Corollary 3.3. If a D2n-cover π : S → Σ branched at 2B1 + nB2 exists, then B2 is a splitting
curve with respect to fB1 .

4. Proof of Theorem 0.2

We first note that there are 3 possibilities for β1(π) : D(S/P2) → P2:

Case 1. D(S/P2) = ZC , β1(π) = fC .

Case 2. D(S/P2) = Z ′
Q, β1(π) = f ′

Q.

Case 3. D(S/P2) = Z ′
C+Q, β1(π) = f ′

C+Q.

Note that f ′
• : Z• → P2 denotes a double cover with branch locus •. We show that our

statements (i) and (ii) hold for Case 1 and neither Cases 2 nor 3 occur.

Case 1. In this case, π is branched at 2C + pQ. Hence, by Corollary 3.3, we infer that
(C/Q) = 1. Put f∗

CQ = Q+ +Q−. By Proposition 3.2, Q+ −Q− is p-divisible in Pic(ZC). Since
Q+ + Q− ∼ (4, 4), Q+ is linearly equivalent to either (3, 1), (1, 3) or (2, 2). Hence, Q+ ∼ Q− ∼
(2, 2) if p ≥ 3.

Case 2. Let Σ2, ∆C and ΓQ be the Hirzebruch surface of degree 2 and the divisors obtained as
in §2. By considering the C(S)-normalization of Σ2, we have a D2p-cover branched at 2(∆0,d +
ΓQ) + p∆C . As in [18], we reduce our problem on the existence of D2p-covers to that on a linear
equation on MW(EQ

x ). By [18, Proposition 4.1], the following proposition is straightforward:

Proposition 4.1. If there exists a D2p-cover of P2 branched at pC + 2Q, then s+C ∈ pMW(EQ
x ).

Let so be an element in MW(EQ
x ) such that pso = s+C . Then we have ⟨so, so⟩ = 2/p2. On the

other hand, by the table in §1, the value of ⟨so, so⟩ ∈ 1/(23 · 3 · 5 · 7)Z. Therefore Case 2 does not
occur.

Case 3. Our statement may follow from the results in [13]. However, we prove our statement
without using the fact that ZB is a K3 surface. Put B = C + D. In this case, the canonical
resolution of D(S/P2) is ZB . Hence by Theorem 3.2, NS(ZB)/RB has p-torsion. By Corollary 3.1
and Theorem 0.1, it is enough to show that there exists no D10-cover in the case when Q has one
A4 singularity and C is an even bitangential conic to Q. Let D be an element of NS(ZB) such that
D gives rise to 5-torsion in NS(ZB)/RB. By using the intersection pairing, D can be regarded as
an element of R∨

B = ⊕b∈Sing(B)R
∨
b . Since R

∨
b can be embedded into Rb ⊗Q canonically, D can be

expressed as an element in ⊕b∈Sing(B)Rb ⊗Q. Let bo be the unique A4 singularity, and put

D ≈Q
∑

b∈Sing(Q)

Db, Db ∈ Rb ⊗Q
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and let γ(Db) be the class of Db in R∨
b /Rb. Since the type of singularity of B other than bo is

either A3, A7, A11 or A15, γ(Db) = 0 if b ̸= bo. As R
∨
bo
/Rbo is generated by

1

5
(4Θ1 + 3Θ2 + 2Θ3 +Θ1),

we have

D −
∑

b∈Sing(B)\{bo}

Db ≈Q
k

5
(4Θ1 + 3Θ2 + 2Θ3 +Θ1) mod RB,

for some k ∈ {±1,±2}. Here we label the irreducible components as follows:

Θ1

Θ2

Θ3 Θ4

By modifyingD with an element in RB suitably, we may assumeD ≈Q k/5(4Θ1+3Θ2+2Θ3+Θ1).
This shows that

D2 = −4k2

5
.

This leads us to a contradiction, as D2 ∈ Z. Therefore Case 3 does not occur.

The remaining part of Theorem 0.2 is immediate from Corollary 3.2. �

Remark 4.1.

(1) (C/Q) = 1 is not enough for the existence of D2n-covers. In fact, for Q with 3A1 singu-
larities, there exists an even tangential conic C such that (C/Q) = 1 but Q+ ̸∼ Q− (see
[2]).

(2) By [13], there exists an irreducible quartic Q with one A5 singularity and an even tan-
gential conic C to Q such that

• C ∩Q = {x1, x2}, Ix1(C,Q) = 2, Ix2(C,Q) = 6, and
• NS(ZB)/RB has 3-torsion.

By Theorem 3.2, there exists a D6-cover branched at 2(C +Q). In this case, (C/Q) = 1,
but Q+ ̸∼ Q−. In fact, if Q+ ∼ Q−, then Q+ is a rational curve with one singularity
whose type is either A1 or A2. This singularity must give rise to another singularity of
Q, which is impossible.

5. Application to the study of Zariski pairs

Let (B1, B2) be a pair of reduced plane curves. We call (B1, B2) a Zariski pair if

(1) both of B1 and B2 have the same combinatorial type (see [1] for the precise definition of
combinatorial type), and

(2) there exists no homeomorphism h : P2 → P2 such that h(B1) = B2.

In the case of an irreducible quartic Q and its even tangential conic, the combinatorial type of
C +Q is determined by ΞQ, ♯C ∩Q and IP (C,Q) for each P ∈ C ∩Q.

As an application of the previous sections, we have
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Proposition 5.1. Let Q1 and Q2 be irreducible quartics and let C1 and C2 be their even tangential
conics, respectively. Suppose that Ci +Qi (i = 1, 2) have the same combinatorial type.

(i) If (C1/Q1) = 1 and (C2/Q2) = −1, then (C1 +Q1, C2 +Q2) is a Zariski pair.

(ii) If (Ci/Qi) = 1 (i = 1, 2), Q+
1 ∼ Q−

1 and Q+
2 ̸∼ Q−

2 , then (C1 +Q1, C2 +Q2) is a Zariski
pair.

Proof. (i) As C1 + Q1 and C2 + Q2 have the same combinatorial type, ΞQ1 = ΞQ2 . Since
(C1/Q1) = 1 and (C2/Q2) = −1, by Theorem 0.1, we see that ΞQ1 = ΞQ2 = 2A1 or A3.
Therefore Q+

1 ∼ Q−
1 ∼ (2, 2). Hence by Corollary 0.2, we infer that π1(P2 \ (C1 + Q1), ∗) ̸∼=

π1(P2 \ (C2 +Q2), ∗), i.e., (C1 +Q1, C2 +Q2) is a Zariski pair.

(ii) Our statement is immediate from [2, Proposition 2].
�

An example for Proposition 5.1 (ii) can be found in [2]. We end this section by giving examples
for Proposition 5.1 (i). Let EQ

x be the rational elliptic surface corresponding to either No. 40 or
No.50 in Theorem 0.1. Choose sections s1 and s2 in MW(EQ

x ) in such a way that

• ⟨si, si⟩ = 2, siO = 0 (i = 1, 2) and
• s1 ∈ 2MW(EQ

x ), while s2 ̸∈ 2MW(EQ
x ).

By Lemma 2.1, there exist even tangential conics Cs1 and Cs2 arising from s1 and s2, respectively.
By Theorem 2.1, we have (Cs1/Q) = 1 and (Cs2/Q) = −1. Hence if Cs1 and Cs2 intersects Q
in the same manner, we have an example for Proposition 5.1 (i). Now we go on to give explicit
examples.

Example 5.1. (cf. [16, Example, p.198]) Let Q be an irreducible quartic given by the affine
equation

f(t, u) = u3 + (271350− 98t)u2 + t(t− 5825)(t− 2025)u+ 36t2(t− 2025)2 = 0.

By taking homogeneous coordinates, [U, T, V ], of P2 in such a way that u = U/V, t = T/V , we
easily see that [1, 0, 0] is a smooth point of Q. Choose [1, 0, 0] as the distinguished point x. We
easily see that the tangent line lx is given by V = 0, and Ix(lx, Q) = 3. The elliptic surface
φQ
x : EQ

x → P1 corresponding to Q and x is given by a Weierstrass equation

y2 = f(t, u).

By [16, Example, p.198], EQ
x satisfies the following properties:

(i) φQ
x has 3 reducible singular fibers over t = 0, 2025,∞, whose types are: I2 over t = 0, 2025

and III over t = ∞. This implies Q has 2A1 as its singularities.
(ii) MW(EQ

x ) ∼= D∗
4 ⊕A∗

1 .

Choose three sections of EQ
x given by [16] as follows:

so : (0, 6t2 − 12150t), s̃1 : (−32t, 2t2 − 6930t), s̃2 : (−20t, 4t2 − 4500t).

For these sections, so ∈ A∗
1 and s̃i ∈ D∗

4 (i = 1, 2) and we have

⟨so, so⟩ =
1

2
, ⟨s̃i, s̃i⟩ = 1 (i = 1, 2), ⟨s̃1, s̃2⟩ = 0,

and there is no other section s with ⟨s, s⟩ = 1/2 other than ±so.
The sections given by s1 := 2so and s2 := s̃1 + s̃2 are

s1 =

(
1

144
t2 +

1231

72
t− 5143775

144
,− 1

1728
t3 − 2335

576
t2 +

13493375

576
t− 29962489375

1728

)
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s2 =

(
1

36
t2 +

435

2
t− 921375

4
,− 1

216
t3 − 1181

24
t2 − 41625

8
t+

373156875

8

)
.

Since s2 ∈ D∗
4 , we infer that s1 is 2-divisible, while s2 is not 2-divisible. Also, both s1 and s2 do

not meet the zero section O and ⟨s1, s1⟩ = ⟨s2, s2⟩ = 2. Let C1 and C2 be conics given by

C1 : u =
1

144
t2 +

1231

72
t− 5143775

144

C2 : u =
1

36
t2 +

435

2
t− 921375

4
.

We infer that C1 and C2 are the even tangent conics corresponding to s1 and s2, respectively.
It is a straightforward computation that, for each i, Ci is tangent to Q at four distinct points.
Hence (C1 +Q,C2 +Q) is an example for Proposition 5.1 (i).

Example 5.2. (cf. [16, Example, p. 210]) Let Q be an irreducible quartic given by the affine
equation

f(t, u) = u3 + (25t+ 9)u2 + (144t2 + t3)u+ 16t4 = 0.

We take a homogeneous coordinate [U, T, V ] as in the previous example. With this coordinate
[1, 0, 0] is a smooth point and choose [1, 0, 0] as the distinguished point x. The tangent line lx is
again given by V = 0 and Ix(lx, Q) = 3. The elliptic surface φQ

x : EQ
x → P1 corresponding to Q

and x is given by a Weierstrass equation

y2 = f(t, u).

Note that we change the equation slightly. The original Weierstrass equation in [16] is y2−6uy =
u3 +25tu2 + (144t2 + t3)u+16t4. By [16, Example, p. 210], EQ

x satisfies the following properties:

(i) φQ
x has 2 reducible singular fibers over t = 0,∞, whose types are: I4 over t = 0 and III

over t = ∞. This implies Q has A3 as its singularity.
(ii) MW(EQ

x ) ∼= A∗
3 ⊕A1∗.

By modifying the sections given [16] slightly, take three sections of EQ
x as follows:

so : (0, 4t2), s̃1 : (−16t,−48t), s̃2 : (−15t, t2 + 45t).

For these sections, so ∈ A∗
1 and s̃i ∈ A∗

3 (i = 1, 2) and we have

⟨so, so⟩ =
1

2
, ⟨s̃i, s̃i⟩ =

3

4
(i = 1, 2), ⟨s̃1, s̃2⟩ =

1

4
,

and there is no other section s with ⟨s, s⟩ = 1/2 other than ±so. The sections given by s1 := 2s0
and s2 := s̃1 + s̃2 are

s1 =

(
1

64
t2 − 41

2
t+ 315,− 1

512
t3 − 55

32
t2 +

2637

8
t− 5670

)
s2 =

(
t2 + 192t+ 8640,−t3 − 301t2 − 27936t− 803520

)
.

Since s2 ∈ A∗
3, we infer that s1 is 2-divisible, while s2 is not 2-divisible. Also, both 2so and s1+s2

do not meet the zero section O and ⟨s1, s1⟩ = ⟨s2, s2⟩ = 2. Let C1 and C2 be conics given by

C1 : u =
1

64
t2 − 41

2
t+ 315

C2 : u = t2 + 192t+ 8640.

We infer that C1 and C2 are even tangential conics to Q corresponding to s1 and s2, respectivly.
A straightforward computation shows that, for each i, Ci is tangent to Q at four distinct points.
Hence (C1 +Q,C2 +Q) is an example for Proposition 5.1 (i).
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Remark 5.1.

(1) Zariski pairs in Examples 5.1 and 5.2 can be found in [13]. Hence our examples are not
new. Our justification lies in a new point of view: quadratic residue curves.

(2) For Zariski pairs in Examples 5.1 and 5.2, there exists a Z-spitting conic for C1 + Q1,
while there exists no such conic for C2 + Q2 (see [13] for the definition of Z-splitting
conics). Moreover precisely, for an irreducible quartic Q with ΞQ = 2A1 or A3 and its
even tangential conic C, one can show (C/Q) = 1 if and only if there exists a Z-splitting
conic for C +Q whose class order is 4 ([20]).
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