Brunella-Khanedani-Suwa variational residues for invariant currents

Mauricio Corrêa, Arturo Fernández-Pérez, Marcio G. Soares

Journal of Singularities
volume 23 (2021), 107-115

Received: 20 February 2020. Received in revised form: 28 April 2021.

DOI: 10.5427/jsing.2021.23f

Add a reference to this article to your citeulike library.


Abstract:

In this work we prove a Brunella--Khanedani--Suwa variational type residue theorem for currents invariant by holomorphic foliations. As a consequence, we provide conditions for the accumulation of the leaves to the intersection of the singular set of a holomorphic foliation with the support of an invariant current.


2010 Mathematical Subject Classification:

Primary 32A27, 37F75, 32S65; Secondary 57R20, 34M45,32C30


Key words and phrases:

Holomorphic foliations, Residues, Invariant currents


Author(s) information:

Mauricio Corrêa
Università degli Studi di Bari, Via E. Orabona 4, I-70125, Bari, Italy
UFMG, Avenida Antônio Carlos, 6627, 30161-970 Belo Horizonte, Brazil
email: mauriciojr@ufmg.br

Arturo Fernández-Pérez
UFMG, Avenida Antônio Carlos, 6627, 30161-970 Belo Horizonte, Brazil
email: fernandez@ufmg.br

Marcio G. Soares
UFMG, Avenida Antônio Carlos, 6627, 30161-970 Belo Horizonte, Brazil
email: msoares@ufmg.br