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PURITY OF BOUNDARIES OF OPEN COMPLEX VARIETIES

ANDRZEJ WEBER

Abstract. We study the boundary of an open smooth complex algebraic variety U . We ask

when the cohomology of the geometric boundary Z = X \U in a smooth compactification X is
pure with respect to the mixed Hodge structure. Knowing the dimension of singularity locus

of some singular compactification, we give a bound for k above which the cohomology Hk(Z)
is pure. The main ingredient of the proof is purity of the intersection cohomology sheaf.

1. Introduction

Let U be a smooth complex algebraic variety which is not compact. We study cohomological
properties of U which are invariant with respect to modifications of the interior of U . In other
words, we investigate cohomological properties of the boundary.

The boundary itself can have at least two meanings. First of all, from the topological point of
view, we may treat an open smooth variety as the interior of a compact manifold with boundary.
In this case, the boundary would mean an odd-dimensional real manifold. We call it the link at
infinity. On the other hand, from the geometric point of view, we may compactify our variety in
the category of algebraic varieties. The boundary is then a subvariety of the compactification. In
addition, we may require that the compactification is smooth. The condition that the boundary
is a normal crossing divisor is irrelevant to us, although it is hidden in the construction of the
mixed Hodge structure. The link at infinity can be identified with the link of the boundary
in the compactification. Despite the differences, we show that the topological and geometric
boundaries have a great deal in common where the mixed Hodge structure is concerned.

To some extent, we try to avoid specific methods of Hodge theory, having in mind possible
applications (or rather open questions) to real algebraic geometry, as well as some questions
about torsion for cohomology of complex varieties. The sections §2-§4 are valid in that generality.
Nevertheless, the results of §5 cannot be generalized and they hold only for rational cohomology
of algebraic varieties. The strong functoriality of the weight filtration implies that the lower
weight subspaces of the topological and geometric boundaries coincide; see Proposition 3. In
similar situations, this phenomenon was already described in [10, Prop. 7.1] and [2, Prop. 5.1].

The proof of the main result of §6 uses even stronger techniques. The purity of the intersection
cohomology sheaf [3] imposes some conditions on the link of the geometric boundary. We prove
Theorem 11, which can be shortened to the following statement:

Theorem 1. Suppose U is a complex smooth algebraic variety. Assume that U admits a singular
compactification Y . Suppose that the singularity of the pair (Y, Y \U) is of dimension s. Then,
for every smooth compactification X, the boundary X \ U has pure cohomology Hk(X \ U), for
k ≥ dim(U) + s.
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Theorem 1, in the case where U admits a one-point compactification, already appeared in [4,
Th. 2.1.11]. A vast generalization was given in [13]. The present version gives a better bound
for purity, although the situation considered here is less general.

One can treat Theorem 1 as a contractibility criterion. For a subvariety Z ⊂ X : if Hk(Z) is
not pure for k ≥ dim(U) + s, then the pair (X,Z) cannot be contracted to a pair (Y,W ) with
singularities of dimension less than or equal to s. Although Theorem 1 resembles the Grauert
criterion, it is of a different nature. In the Grauert criterion, the intersection form on Z depends
on the embedding Z ⊂ X, whereas, here, the mixed Hodge structure of Z does not. Needless to
say, our criterion is not sufficient for the existence of a contraction.

In contrast to our previous paper [13], we try to present the subject in a form as elementary
as possible. We have avoided using mixed the Hodge modules of [11], taking for granted that
the cohomology with coefficients in a complex of sheaves of geometric origin has a natural
mixed Hodge structure. By “geometric origin”, we mean “obtained by the standard sheaf-
theoretic operations”. We assume that the varieties are defined over the real numbers or over
the complex numbers, and we use classical topology. In our arguments, we will apply resolution
of singularities, although parts of the results depend only on the formal properties of mixed
Hodge modules or Weil sheaves.

2. Topological boundary: the link at infinity

Let us begin with a description of some invariants of open manifolds which can be defined using
just topology and basic properties of resolutions of singularities. Working with Z/2-cohomology,
we can apply our construction also for real algebraic manifolds. For complex manifolds, we can
use any coefficients, not necessarily Q.

The first invariant we propose to consider is the cohomology of the link at infinity:

H∗(L∞U) := lim−−−→
K⊂U

H∗(U \K) ,

where K runs through compact sets contained in U . The group H∗(L∞U) is exactly the cohomol-
ogy of the link LZ , which is the link of the boundary set Z = X\U , where X is a compactification
of U . (For various approaches to the link of a subvariety, see [5].) This cohomology group is of
finite dimension. It can be expressed in terms of sheaf operations on X:

H∗(L∞U) = H∗(LZ) = H∗(Z; i∗Rj∗QU ) ,

where j : U ↪→ X and i : X \ U ↪→ X are the inclusions.

3. Geometric boundary: image of boundary cycles

Another invariant which we consider is the image of the boundary cocycles

IB∗(U) = im(H∗(Z)→ H∗+1
c (U)) = ker(H∗+1

c (U)→ H∗+1(X)) ,

where X is a smooth compactification of U and Z = X \ U . The maps come from the long
exact sequence of the pair (X,Z).

To show the independence of X, we start with a purely topological lemma.

Lemma 2. Suppose we have a map of real smooth oriented closed manifolds

f : X1 → X2,

which is an isomorphism of some open subsets

f|U1
: U1 = f−1(U2)

'→ U2 .
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Denote by

IB∗i = ker(H∗+1
c (Ui)→ H∗+1(Xi))

the kernels of the natural maps for i = 1, 2. Then f induces an isomorphism

f∗ : IB∗2 → IB∗1 .

Proof. The map f∗ : H∗(X2)→ H∗(X1) is injective, since it is a map of degree one of compact
manifolds. The map f induces the transformation

IBk2 ↪→ Hk+1
c (U2) → Hk+1(X2)

↓ ' ↓ mono ↓
IBk1 ↪→ Hk+1

c (U1) → Hk+1(X1).

It follows that IBk2 → IBk1 is an isomorphism. 2

To prove the independence of IB∗(U) on the compactification, simply note that any two
smooth compactifications are dominated by a third one.

4. Basic exact sequences

We will need three exact sequences to relate the described invariants. These exact sequences
may be constructed topologically, but it is important to know that they come from distinguished
triangles in the derived category of sheaves. It will follow that, for complex varieties, the maps
of the described exact sequences preserve the mixed Hodge structure.

We start with the sequence relating the cohomology of U and the cohomology of its link at
infinity. Let X be any compactification and Z = X \ U . It is possible to find a neighbourhood
N of Z which retracts to Z and such that the boundary ∂N is homeomorphic to the link of Z.
Considering the pair (X \N, ∂N), we arrive at the long exact sequence

(1) · · · → Hk(U)→ Hk(LZ)
δ→ Hk+1

c (U)→ Hk+1(U)→ · · · .

This exact sequence may, in fact, be obtained from the fundamental distinguished triangle (in
the category of mixed Hodge modules on X)

(2)
i∗i

!G −→ G

[+1] ↖ ↙
Rj∗j

∗G

where G = j!QU . By duality, we obtain the triangle

i!i
∗Rj∗QU ←− Rj∗QU

[+1] ↘ ↗
j!QU

since j!j
!Rj∗QU ' j!QU . Applying cohomology, we obtain the sequence (1).

We also need an exact sequence relating Hk(Z) and Hk(LZ). Topologically, we have a
deformation retraction from the closure N → Z. The exact sequence for the manifold with
boundary (N, ∂N),

· · · → Hk(N)→ Hk(∂N)→ Hk+1(N, ∂N)→ Hk+1(N)→ · · · ,

becomes

(3) · · · → Hk(Z)→ Hk(LZ)→ Hk+1(X,U)→ Hk+1(Z)→ · · · .
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The sheaf theoretic definition is given below. Let us restrict the triangle (2) with G = QX to Z.
We have i∗i∗i

!QX = i!QX , and we obtain the triangle

i!QX −→ QZ
[+1] ↖ ↙

i∗Rj∗QU .
The associated sequence of cohomology is just (3). It plays a fundamental role in our further
consideration.

Of course, the third exact sequence that we use is the sequence of the pair (X,Z)

(4) · · · → Hk(X)→ Hk(Z)→ Hk+1
c (U)→ Hk+1(X)→ · · · .

To relate the groups H∗(L∞(U)) = H∗(LZ) and IB∗(U) = im(Hk(Z) → Hk+1
c (U)), we apply

the map of exact sequences from (4) to (1) induced by the inclusion

(X \N, ∂N) ⊂ (X,N)
htp
' (X,Z) .

We obtain the commutative diagram

Hk(Z) → Hk+1
c (U)

↓ ‖
Hk(LZ) → Hk+1

c (U) .

We see that

IBk(U) = im(Hk(Z)→ Hk+1
c (U)) ⊂ im(Hk(L∞(U))→ Hk+1

c (U)) .

In general, this inclusion is proper.

5. Mixed Hodge structure

From now on, we consider only complex algebraic varieties and rational cohomology.

The invariants Hk(L∞U) and IBk(U) are equipped with mixed Hodge structures. The first
one is given by the sheaf-theoretic description:

H∗(L∞U) = H∗(Z; i∗Rj∗QU ) .

The second one, IB∗(U), has a structure induced from H∗(Z). In the situation of Lemma 2, the
map IBk2 → IBk1 preserves the quotient mixed Hodge structures and since it is an isomorphism
of vector spaces it must be also an isomorphism of all weight subspaces. In fact, by the definition
of the mixed Hodge structure, we have

IBk(U) = WkH
k+1
c (U) .

For us, the most interesting part is the weight subspace Wk−1. Using basic properties of the
mixed Hodge structure, we will give three descriptions of that weight space.

Proposition 3. Let X be a smooth compactification of U and Z = X \ U . Then the following
groups are isomorphic:

(1) Wk−1H
k(L∞U) ,

(2) Wk−1H
k+1
c (U) ,

(3) Wk−1H
k(Z) .

Note that, in the statement of the theorem, we do not assume that Z is a smooth divisor with
a normal crossings. As a corollary to Proposition 3, we have

Corollary 4. Let X be a smooth compactification of U and Z = X \U . The cohomology Hk(Z)
is pure, of weight k, if and only if Hk(LZ) is of weight ≥ k.
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Also we note (compare [10, Prop. 7.1]):

Corollary 5. The impure part of cohomology of the boundary set Wk−1H
k(Z) does not depend

on the smooth compactification.

Remark 6. Note that the group Wk−1H
k(Z) is a topological invariant of Z, since, by [12], it

is the kernel of the canonical map to intersection cohomology Hk(Z) → IHk(Z). Also, by the
construction of the mixed Hodge structure, we have

Wk−1H
k(Z) = ker(g∗ : Hk(Z)→ Hk(Z̃)) ,

where g : Z̃ → Z is any dominating proper map from a smooth variety, possibly of bigger
dimension.

The entire cohomology of the boundary of a smooth compactification is not an invariant
of U . Of course, when we blow up something at the boundary, the cohomology is modified;
nevertheless, the lower parts of the weight filtration remain unchanged.

Remark 7. With the help of the Decomposition Theorem of [3], we have better insight into what
happens with the cohomology of the boundary. Let f be a map of pairs (X1, Z1) → (X2, Z2)
which is an isomorphism outside Z1. The push-forward of the constant sheaf on X1 decomposes:

Rf∗QX1
' QX2

⊕
⊕
α

IC(Vα;Lα) .

The supports of the intersection sheaves IC(Vα;Lα) are contained in Z2; therefore

H∗(Z1) = H∗(Z2; (Rf∗QX1
)|Z2

) ' H∗(Z2)⊕
⊕
α

IH∗(Vα;Lα) .

Again, we see that the difference between H∗(Z1) and H∗(Z2) is pure, since
⊕

α IH
∗(Vα;Lα) is

a summand of H∗(X1) .

Remark 8. Using another powerful tool, namely the Weak Factorization Theorem [1], we can
trace how the cohomology of the boundary may change. Each time, when we blow up a smooth
center S contained in the boundary, the pure summand coker

(
H∗(S)→ H∗(PNS/X)

)
contributes

to the cohomology of the blown-up boundary. Here, H∗(PNS/X) is the projectivization of the
normal bundle of S in X.

The proof of Proposition 3 is divided into Lemmas 9 and 10.

Lemma 9. We have

Wk−1H
k(Z) 'Wk−1H

k+1
c (U) .

Proof. We recall that Hk(X) is of weight k and Hk+1(X) is of weight k + 1. Therefore, the
long exact sequence

· · · → Hk(X)→ Hk(Z)
δ→ Hk+1

c (U)→ Hk+1(X)→ · · ·

induces an isomorphism of graded pieces for ` < k

GrW` H
k(Z) ' GrW` Hk+1

c (U) .

It follows that the boundary map Wk−1H
k(Z)→Wk−1H

k+1
c (U) is an isomorphism. 2

Lemma 10. We have

Wk−1H
k(LZ) 'Wk−1H

k+1
c (U) .
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Proof. We consider the long exact sequence (1). Since U is smooth, Wk−1H
k(U) = 0. Therefore,

for ` < k
GrW` H

k(LZ) ' GrW` Hk+1
c (U) .

Again, the boundary map Wk−1H
k(LZ)→Wk−1H

k+1
c (U) is an isomorphism. 2

6. Singular versus smooth compactifications

Let W ⊂ Y be a pair of varieties. Assume that Y \W is smooth. By the “singularity of the
pair”, we mean the set of points at which W in Y analytically does not look like a submanifold
(of any dimension) in a manifold. The singularity set consists of points at which W or Y is
singular. Below, we give the exact statement of our main result.

Theorem 11. Let U be a smooth variety. Suppose that U admits a compactification Y and let
W = Y \U be the boundary set. Denote by s the dimension of the singularity of the pair (Y,W ).
Let X be a smooth compactification of U and Z = X \ U . For k ≥ dim(U) + dim(W ), we have:

i) the cohomology of the link Hk(LZ) is of weight ≥ k + 1,
ii) the restriction map Hk(Z)→ Hk(LZ) vanishes.

For k ≥ dim(U) + s we have:
iii) the cohomology of the boundary Hk(Z) is pure, of weight k, that is

Wk−1H
k(Z) = 0

iv) the cohomology of the link Hk(LZ) is of weight ≥ k.

Note that, by Proposition 3, claim iv) does not depend on the choice of the smooth compac-
tification X.

Let n = dim(U). By Poincaré duality, we have

Hk(Z)∗ = H2n−k(X,U)(n) ,

Hk(LZ)∗ = H2n−1−k(LZ)(n) ,

where (n) denotes the Tate twist shifting the weights by 2n. The dual version of Theorem 11 is
the following:

Theorem 12. With the assumptions of Theorem 11:

For k ≤ dim(U)− dim(W ), we have
i’) the cohomology of the link Hk−1(LZ) is of weight ≤ k − 1,
ii’) the boundary map Hk−1(LZ)→ Hk(X,U) vanishes.

For k ≤ dim(U)− s, we have
iii’) the cohomology Hk(X,U) is pure, of weight k, that is

WkH
k(X,U) = Hk(X,U)

iv’) the cohomology of the link Hk−1(LZ) is of weight ≤ k.

To distinguish two copies of U in X and in Y , we will use the letter V for the copy of U in
Y . The identification map U → V is denoted by f :

Z = X \ U ⊂ X = U ⊃ U

'
y f

W = Y \ V ⊂ Y = V ⊃ V
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Remark 13. In our setup, we can apply completion and resolution of singularities. Therefore,
X can be replaced by a dominating smooth variety for which the map f extends to the boundary.

Some information about the weights of the cohomology of the link and the boundary can be
deduced when we have a proper map f : U → V and a compactification of V . A statement which
generalizes i) and ii) in terms of the defect of semismallness (introduced in [4]) is formulated
in [13]. The direct generalization of iii) and iv) would involve precise information about the
singularities of the perverse cohomology sheaves pHkRf∗QU .

Theorem 11 can be localized around a topological component of X \ U . Precisely, consider
the set of ends, i.e., U∞ = π0(X \ U). This set does not depend on the choice of X, provided
that X is normal. A map of algebraic varieties which is proper induces a map of their ends. To
deduce purity of the cohomology of a part of the boundary of U , it is enough to have information
about a singular completion of the corresponding end.

7. Proofs

Before the proof of Theorem 11, let us recall the key property of the link of a subvariety.

Theorem 14 ([5]). Let Y be a variety and let W be a compact subvariety. Let us assume that
Y \W is smooth. Then, Hk(LW ) is of weight ≤ k, for degrees k < dim(Y )− dim(W ).

Theorem 14 immediately follows from the purity of the intersection sheaf [6, 3], since the stalk
cohomology Hk(ICY ) is isomorphic to Hk(Rj∗QV ) for k < dim(Y ) − dim(W ) and H∗(LW ) =
H∗(W ; (Rj∗QV )|W ).

Remark 15. In [2, §6], the Decomposition Theorem of [3] was used to give estimates for the
dimension of intersection cohomology of the link by means of resolution. But it seems that the
purity of the intersection sheaf was not used directly.

Proof of (12.i’-ii’).
By Remark 13, we assume that the map f extends to X. The extended map (denoted by the

same letter) induces a map of sheaves i′∗Rj′∗QV → Rf∗i
∗Rj∗QU . Therefore, the mixed Hodge

structures of the isomorphic groups H∗(LW ) and H∗(LZ) coincide. By Theorem 14 and the
assumption on the dimension of W , the cohomology Hk−1(LW ) is of weight ≤ k − 1. Claim
12.ii’ follows from the long exact sequence (3): the boundary map

Hk−1(LZ)→ Hk(X,U)

vanishes because the first term is of weight ≤ k − 1 and the second term is of weight ≥ k.

Proof of (11.i-ii) follows by duality.

Proof of (11.iii-iv) If W = Sing(Y ), then s = dim(W ), and statement i) is even stronger
than iii). Also by Proposition 3 we have Wk−1H

k(Z) = Wk−1H
k(LZ) ⊂ WkH

k(LZ) = 0,
therefore iv) follows.

Suppose now that Sing(Y ) (W . We may assume that f extends to a map X → Y and also

we may assume that the map f is a resolution of singularities of the pair (Y,W ). Let W̃ ⊂ X

be the proper transform of W . Denote by E ⊂ X the exceptional set of f and let F = E ∩ W̃ .

Consider the Mayer-Vietoris exact sequence for Z = E ∪ W̃ :

· · · → Hk−1(E)⊕Hk−1(W̃ )
α→ Hk−1(F )

δ→ Hk(Z)→ Hk(E)⊕Hk(W̃ )→ · · · .
By (11.i), applied to the map (X,E) → (Y, f(E)), the cohomology of the link Hk(LE) is of
weight ≥ k+ 1 for k ≥ dim(X) + s. Hence, by Proposition 3, the cohomology Hk(E) is pure for
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k ≥ dim(X) + s. Of course, Hk(W̃ ) is pure since we assume that W̃ is smooth. To prove the
purity of Hk(Z), it remains to show that the map δ of the Mayer-Vietoris sequence is trivial.

By (11.ii), applied to F ⊂ W̃ , the map

Hk−1(F )→ Hk−1(LF )

vanishes for k − 1 ≥ dim(W ) + s. By the exact sequence (3) of that pair, the restriction map

Hk−1(W̃ , W̃ \ F )→ Hk−1(F )

is surjective. The above map factors through Hk−1(W̃ ); therefore, the map

Hk−1(W̃ )→ Hk−1(F )

is surjective. It follows that the restriction map α is surjective and the boundary map δ is trivial
for k ≥ dim(X) + s ≥ dim(W ) + s+ 1. This completes the proof.

Proof of (12.iii’-iv’) follows by duality. 2

Remark 16. If the singularity set is empty, then s = −∞ by convention. Claims (11.i-ii) hold
in all degrees for trivial reasons.

The special case when W is a point (an isolated singularity resolution) was studied from
the very beginning of the theory. In that case, both maps Hn−1(LZ) → Hn(X,U) and
Hn(X) → Hn(LZ) are trivial. The map Hn(X,U) → Hn(Z) is an isomorphism. After the
identification Hn(X,U) = Hn(Z)∗, we obtain a nondegenerate intersection form, which was
studied for example in [7].

8. Questions about real algebraic varieties

Hodge theory for real algebraic varieties and Z/2 coefficients is not available. The approach
of [8, 9] does not lead to a strongly functorial weight filtration. Nevertheless, one defines impure

cohomology of a singular compact variety X: it is the kernel of H∗(X) → H∗(X̃), where X̃ is
any resolution. We say that the cohomology of a real variety is pure if the kernel H∗(X) →
H∗(X̃) is trivial. The definition does not depend on X̃. Now one can ask the question about a
generalization of Theorem 11:

Question 17. With the assumption of Theorem 3 for real algebraic varieties: What properties
of (Y,W ) would guarantee purity of H∗(Z) in some range of degrees?

The dimension of the singularity set is far too weak of an invariant. It is well-known that any
real algebraic set can be contracted to a point.
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1981), 119-129, Lecture Notes in Math., 961, Springer, Berlin, 1982.
[8] McCrory, C.; Parusinski, A.: The weight filtration for real algebraic varieties II: Classical homology. Fried-

man, Greg (ed.) et al., Topology of stratified spaces. Cambridge University Press. Mathematical Sciences

(2011), 121-160
[9] McCrory, C.; Parusinski, A.: The weight filtration for real algebraic varieties II: Classical homology.

arXiv:1202.3129

[10] Payne, S.: Boundary complexes and weight filtrations. arXiv:1109.4286
[11] Saito, M.: Hodge Modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333.

[12] Weber, A.: Pure homology of algebraic varieties. Topology Vol. 43, no 3, (2004) p. 635-644. DOI:

10.1016/j.top.2003.09.001
[13] Weber, A.: Purity at the end. Preprint 2009, http://arxiv.org/abs/0809.1885

Department of Mathematics of Warsaw University, Banacha 2, 02-097, Warszawa, Poland

E-mail address: aweber@mimuw.edu.pl

http://arxiv.org/abs/1202.3129
http://arxiv.org/abs/1109.4286
http://dx.doi.org/10.1016/j.top.2003.09.001
http://dx.doi.org/10.1016/j.top.2003.09.001

	1. Introduction
	2. Topological boundary: the link at infinity
	3. Geometric boundary: image of boundary cycles
	4. Basic exact sequences
	5. Mixed Hodge structure
	6. Singular versus smooth compactifications
	7. Proofs
	8. Questions about real algebraic varieties
	References

