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CHERN CLASSES OF FREE HYPERSURFACE ARRANGEMENTS

PAOLO ALUFFI

Abstract. The Chern class of the sheaf of logarithmic derivations along a simple normal crossing
divisor equals the Chern-Schwartz-MacPherson class of the complement of the divisor. We extend

this equality to more general divisors, which are locally analytically isomorphic to free hyperplane

arrangements.

1. Introduction

For us, an arrangement in a nonsingular variety V is a reduced divisor D consisting of a union
of nonsingular hypersurfaces, such that at each point D is locally analytically isomorphic to a
hyperplane arrangement. We say that the arrangement is free if all these local models may be
chosen to be free hyperplane arrangements. It follows that D is itself a free divisor on V : the sheaf of
logarithmic differentials Ω1

V (logD) along D is locally free. Equivalently, its dual sheaf of logarithmic
derivations, DerV (− logD) := Ω1

V (logD)∨, is locally free. Free hyperplane arrangements in Pn and
divisors with simple normal crossings in a nonsingular variety give examples of free hypersurface
arrangements.

In this note we extend to free hypersurface arrangements a result that is known to hold for these
examples.

Theorem 1.1. Let V be a nonsingular complex variety, and let D ⊆ V be a free hypersurface
arrangement. Then

c(DerV (− logD)) ∩ [V ] = cSM(11VrD) .

Here, cSM(11VrD) is the Chern-Schwartz-MacPherson class of the constructible function 11VrD,
in the sense of [13], see also [9], Example 19.1.7.

For simple normal crossing divisors, the equality of Theorem 1.1 was verified in [10] (Proposi-
tion 15.3) and [2]. For free projective hyperplane arrangements, it is Theorem 4.1 in [5], where it
is obtained as a simple corollary of a result of Mustaţǎ and Schenck ([14]). Theorem 1.1 will be
obtained here by considering the blow-ups giving an embedded resolution of D. Each blow-up will
be analyzed by using MacPherson’s graph construction, showing (Claim 2.4) that the Chern class of
the corresponding sheaf of logarithmic derivations is preserved by push-forward. The theorem will
then follow from the corresponding behavior of the Chern-Schwartz-MacPherson class and from the
case of normal crossing divisors.

In particular, this will give an independent proof (and a substantial generalization) of the case of
free hyperplane arrangements treated in [5].

The term ‘hypersurface arrangement’ is often used in the literature to simply mean a union of
hypersurfaces (nonsingular or otherwise). This is a substantially more general notion than the one
used in this note. The statement of Theorem 1.1 is not true in this generality, even for free divisors.
For example, if V is a surface (so that every reduced divisor is free in V ), a condition of local
homogeneity is necessary for this result to hold, as observed by Xia Liao (cf. [12]).

The paper is organized as follows: in §2 we recall the basic definitions and reduce the main
theorem to showing that Chern classes of sheaves of logarithmic derivations are preserved through
certain types of blow-ups. This is proven in §3, using the graph construction. In §4 we offer a simple
example, and show that the theorem is equivalent to a projection formula for Chern classes of certain
coherent sheaves.
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A word on the hypotheses: the freeness of the divisor is used crucially in the application of the
graph construction; its local analytic structure is less essential, but convenient in some coordinate
arguments. It is conceivable that the proof given here may be generalized to divisors satisfying a
less restrictive local homogeneity requirement.

The result in this note generalizes Theorem 4.1 in [5]. I presented the results of [5] in my talk at
the Hefei conference on Singularity Theory, and I take this opportunity to thank Xiuxiong Chen and
Laurentiu Maxim for the invitation to speak at the conference and for organizing a very successful
and thoroughly enjoyable meeting. I also thank the referee for valuable suggestions.

2. Set-up

2.1. We work over an algebraically closed field of characteristic 0; the reader is welcome to assume
the ground field is C. (Characteristic 0 is required in the theory of Chern-Schwartz-MacPherson
classes. See [11] or [3] for a discussion of the theory over algebraically closed fields of characteristic 0.)

Chern-Schwartz-MacPherson classes are classes in the Chow group of a variety V defined for
constructible functions on V , and are characterized by the normalization requirement that cSM(11V ) ∈
A∗V equals c(TV ) ∩ [V ] if V is nonsingular and the covariance property

α∗cSM(ϕ) = cSM(α∗ϕ)

for all proper morphisms α : V → V ′ and all constructible functions ϕ on V . Over C, the push-
forward of a constructible function is defined by taking weighted Euler characteristics of fibers: for
a subvariety Z ⊆ V , α∗(11Z)(p) = χ(Z ∩ α−1(p)). Thus, cSM determines a natural transformation
from the functor of constructible functions to the Chow functor. The existence of this natural
transformation was conjectured by Deligne and Grothendieck, and proved by MacPherson ([13]).
Interest in these classes has resurged in the past few years; comparison with other classes for singular
varieties gives an intersection theoretic invariant of singularities generalizing directly the Milnor
number. A recent survey may be found in [16].

The interested reader may consult Example 19.1.7 in [9] for an efficient summary of MacPherson’s
definition; an alternative construction is presented in [3]. In any case, the details of the definition
of these classes are not needed for this paper: only the key covariance property recalled above will
be used. Note that if V1 and V2 are constructible subsets of V , then

cSM(11V1∪V2) = cSM(11V1 + 11V2 − 11V1∩V2) = cSM(11V1) + cSM(11V2)− cSM(11V1∩V2) :

the Chern-Schwartz-MacPherson classes satisfy ‘inclusion-exclusion’; for example, they are additive
on disjoint unions. Also, if V is complete, so that the constant map κ : V → pt is proper, then by
covariance

κ∗cSM(11U ) = cSM(κ∗11U ) = cSM(χ(U)11pt) = χ(U)[pt]

for any constructible U in V . This says that the degree of cSM(11U ) equals the Euler characteristic
χ(U), generalizing the Poincaré-Hopf theorem to singular and/or noncomplete varieties. (This was
one of the motivations for the original definition of these classes by M.-H. Schwartz, cf. [17, 18].)

2.2. The covariance property of Chern-Schwartz-MacPherson classes has the following immediate

consequence. Let V be a variety, and let X ⊆ V be a subscheme. Let ρ : Ṽ → V be a proper map,

and let X ′ ⊆ Ṽ be any subscheme such that ρ restricts to an isomorphism Ṽ rX ′ → V rX. Then

ρ∗cSM(11ṼrX′) = cSM(11VrX) .

Indeed, ρ∗(11ṼrX′) = 11VrX .

In particular:

Lemma 2.1. Let V be a nonsingular variety, and let D ⊆ V be a subscheme. Let ρ : Ṽ → V be a

proper morphism such that Ṽ is nonsingular, and the support D′ of ρ−1(D) is a divisor with normal
crossings and nonsingular components. Then

cSM(11VrD) = ρ∗(c(DerṼ (− logD′)) ∩ [Ṽ ]) .
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Proof. As recalled in §1, since D′ is a simple normal crossing divisor in Ṽ , then

cSM(11ṼrD′) = c(Ω1
Ṽ

(logD′)∨) ∩ [Ṽ ] = c(DerṼ (− logD′)) ∩ [Ṽ ] .

This is proved in e.g., [2], Theorem 1; we quickly recall the argument, for the convenience of the
reader. Let D′i, i = 1, . . . , N be the components of D′. Since D′ is a divisor with normal crossings,

c(Ω1
Ṽ

(logD′)∨) equals c(T Ṽ )/
∏
i(1 + D′i) (as is well-known, and easily verified). Now the stated

equality is clear if N = 0. For N > 0:

c(T Ṽ )∏
i(1 +D′i)

=
c(T Ṽ )∏

i<N (1 +D′i)

(
1− D′N

1 +D′N

)
=

c(T Ṽ )∏
i<N (1 +D′i)

− c(TD′N ) ·D′N∏
i<N (1 +D′i)

and therefore

c(T Ṽ )∏
i(1 +D′i)

∩ [Ṽ ] =
c(T Ṽ )∏

i<N (1 +D′i)
∩ [Ṽ ]− c(TD′N )∏

i<N (1 +D′i)
∩ [D′N ] .

Arguing by induction on N , the first summand equals the cSM class of the complement of the union
of the first N − 1 components, and the second equals the cSM class of the trace of this complement
on the N -th component. The equality follows then by the additivity of Chern-Schwartz-MacPherson
classes on disjoint unions.

The equality implies the formula stated in the lemma, by covariance:

cSM(11VrD) = ρ∗cSM(11ṼrD′) = ρ∗(c(DerṼ (− logD′)) ∩ [Ṽ ]).

�

2.3. Now let V be a nonsingular variety, and let D be a hypersurface arrangement, as in §1. In
particular: at every p ∈ D, there is a choice of analytic coordinates x1, . . . , xn such that the ideal of
D in the completion k[[x1, . . . , xn]] is generated by a product of linear polynomials

∑
λixi, defining

a central hyperplane arrangement Ap.

Lemma 2.2. The divisor D is free on V if and only if each Ap is a free central hyperplane arrange-
ment.

Proof. Recall that a divisor in a nonsingular variety V is free if and only if its singularity subscheme
is empty or Cohen-Macaulay of codimension 2 in V at each p ∈ D. It follows that a central
hyperplane arrangement is free if and only if its singularity subscheme is empty or Cohen-Macaulay
of codimension 2 at the origin. (Cf. [20], Proposition 2.4.)

The statement then follows from the fact that a local ring is Cohen-Macaulay if and only if its
completion is ([7], Corollary 2.1.8). �

Under the hypotheses of Theorem 1.1, DerV (− logD) is locally free. With ρ : Ṽ → V as in the
statement of Lemma 2.1, DerṼ (− logD′) is also locally free, as D′ is a divisor with simple normal
crossings. Lemma 2.1 reduces Theorem 1.1 to proving that if D is a free hypersurface arrangement

in V , and ρ : Ṽ → V is as in the statement of Lemma 2.1, then

(*) ρ∗(c(DerṼ (− logD′)) ∩ [Ṽ ]) = c(DerV (− logD)) ∩ [V ] .

2.4. Next, we observe that an embedded resolution ρ of a hypersurface arrangement D may be
obtained by blowing up along the intersections of the components of the arrangement, in order of
increasing dimension, and that these intersections are all nonsingular. In order to verify (*), it
suffices to verify that the stated equality holds for each of these blow-ups. More precisely: Given a
hypersurface arrangement D in a nonsingular variety V , let Z be a component of lowest dimension
among the intersections of components of D; let π : V̂ → V be the blow-up of V along Z; let E
be the exceptional divisor of this blow-up; and let D′ be the divisor in V̂ consisting of E and the
proper transforms of the components of D.

Lemma 2.3. With notation as above, if D is a free hypersurface arrangement, then so is D′.
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Proof. We can work analytically at a point p ∈ V , so we may assume that D is given by a product of
linear forms cutting out the center Z at p. We may in fact assume that there are analytic coordinates
x1, . . . , xn at p so that Z is given by x1 = · · · = xr = 0, and the generator of the ideal of D is a
homogeneous polynomial F (x1, . . . , xr) =

∏
Li(x), with Li linear.

Let q ∈ V̂ be a point over p. We may choose analytic coordinates (x̂1, x̂2, . . . , x̂n) at q so that
x̂1 = 0 is the exceptional divisor, and the blow-up map is given by

(x1, . . . , xn) = (x̂1, x̂1x̂2, . . . , x̂1x̂r, x̂r+1, . . . , x̂n) .

The ideal for D′ at q is then generated by

x̂1 F (1, x̂2, . . . , x̂r) ;

omitting the factors in F (1, x̂2, . . . , x̂r) that do not vanish at q, we write the generator for D′ at q
as

x̂1Q(x̂2, . . . , x̂r) ,

where Q is a product of linear forms. In particular, D′ is a hypersurface arrangement in V̂ . We have
to verify that it is free.

Note that the divisor defined by Q(x̂2, . . . , x̂r) is free at q: indeed, the hyperplane arrangement
defined by F (x1, . . . , xn) is free by assumption, and Q(x2, . . . , xr) generates the ideal of this arrange-
ment at points (t, 0, . . . , 0) with t 6= 0. By Saito’s criterion ([15], Theorem 4.19), Q(x̂2, . . . , x̂r) is the
determinant of a set of n−1 logarithmic derivations θ2, . . . , θn at q. Since θ2(x̂1) = · · · = θn(x̂1) = 0,
these derivations are logarithmic with respect to x̂1Q(x̂2, . . . , x̂r).

On the other hand the Euler derivation θ1 = x̂1 ∂/∂x̂1 + x̂2 ∂/∂x̂2 + · · ·+ x̂n ∂/∂x̂n is logarithmic
with respect to x̂1Q as this is homogeneous (cf. [15], Definition 4.7), and det(θ1, . . . , θn) is a unit
multiple of x̂1Q(x̂2, . . . , x̂r). This shows that D′ is free, again by Saito’s criterion. �

2.5. By Lemma 2.3, DerV̂ (− logD′) is locally free if DerV (− logD) is, and we may consider its
ordinary Chern classes. We have reduced the proof of Theorem 1.1 to the following statement.

Claim 2.4. Let D be a free hypersurface arrangement on a nonsingular variety V ; let π : V̂ → V
be the blow-up of V along a component of lowest dimension of the intersection of components of D,
and let D′ = (π−1(D))red, as above. Then

π∗(c(DerV̂ (− logD′)) ∩ [V̂ ]) = c(DerV (− logD)) ∩ [V ] .

The next section is devoted to the proof of this claim, and this will complete the proof of Theo-
rem 1.1.

3. Proof of Theorem 1.1

3.1. We will prove Claim 2.4 as an application of MacPherson’s graph construction. Given a
homomorphism σ : E → F of vector bundles on a variety Y , consider the graph of λσ for λ ∈ k,
as a subbundle of E ⊕ F . For all λ, this defines an embedding of Y in the Grassmannian G =
Grassrk E (E ⊕F ), such that the pull-back of the universal subbundle ζ of G is isomorphic to E . The
graph construction describes the limit ‘as λ → ∞’ of this embedding as a cycle in G, using which
one may compare the Chern classes of E and F . We refer the reader to Example 18.1.6 in [9] for
the details and key properties of this useful construction. We will use the fact that if σ restricts to
an isomorphism on a subbundle K of E over a subvariety E of Y , then K embeds as a subbundle
of ζ|E over the cycle at infinity; and an analogous dual statement concerning epimorphisms. These
facts are straightforward consequences of the construction.
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As in §2, we denote by Z the center of the blow-up, E the exceptional divisors; and the natural
morphisms as in this diagram:

E

p

��

j // V̂

π

��
Z

ι
// V

By assumption Z is a nonsingular subvariety of V ; we let r be its codimension. In a neighborhood
of Z, Z is the transversal intersection of r components of D: indeed, if D1, . . . , Dr cut out Z at a
point, then Z is contained in a connected component of D1 ∩ · · · ∩Dr, so it must be equal to it as
D1 ∩ · · · ∩Dr is nonsingular by our hypothesis on D. The key lemma will be the following:

Lemma 3.1. Under the hypotheses of Claim 2.4:

• There is a vector bundle homomorphism σ : π∗DerV (− logD) → DerV̂ (− logD′) that is an
isomorphism in the complement of E.

• The restriction of σ to E induces a morphism of complexes of vector bundles

OE

=

��

� � // π∗DerV (− logD)|E

σ|E
��

// // p∗DerZ

=

��
OE
� � // DerV̂ (− logD′)|E // // p∗DerZ

The monomorphisms and epimorphisms shown in this diagram will be defined in the course of the
proof of Lemma 3.1, in §3.3; the monomorphisms will be monomorphisms of vector bundles.

Claim 2.4 follows from Lemma 3.1, as we now show. Applying the graph construction to σ yields
a cycle

∑
i ai[Wi] of dimension n = dim V̂ in the Grassmannian

G = Grassn(π∗DerV (− logD)⊕DerV̂ (− logD′))

over V̂ . The details of the construction of the subvarieties Wi are immaterial here; the key property
of this cycle is that since σ is an isomorphism off E,

c(π∗DerV (− logD)) ∩ [V̂ ]− c(DerV̂ (− logD′)) ∩ [V̂ ] =
∑
Wi→E

aiηi∗(c(ζ) ∩ [Wi]) ,

where ηi : Wi → V̂ are the maps induced by projection, and ζ is the rank-n universal bundle on G.
(See (c) in Example 18.1.6 of [9].) Pushing forward to V , and since DerV (− logD) is assumed to be
locally free,

c(DerV (− logD)) ∩ [V ]− π∗(c(DerV̂ (− logD′)) ∩ [V̂ ]) =
∑
Wi→E

aiπ∗ηi∗(c(ζ) ∩ [Wi]) .

Therefore, in order to verify Claim 2.4 it suffices to prove that π∗η∗(c(ζ) ∩ [W ]) = 0 for every
component W = Wi projecting into E via η = ηi. We let η be the morphism W → E:

W

η

��

η

  
E

j
//

p

��

V̂

π

��
Z

ι
// V

We have π ◦ η = ι ◦ p ◦ η. Thus it suffices to show that

p∗η∗(c(ζ) ∩ [W ]) = 0 .
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The component W lies in G|E = Grassn(π∗DerV (− logD)|E ⊕DerV̂ (− logD′)|E), and ζ restricts to
the universal bundle ζ|E on G|E ; c(ζ) ∩ [W ] = c(ζ|E) ∩ [W ] by functoriality of Chern classes. By
the second part of Lemma 3.1, the restriction of ζ|E to each component W is the middle term in a
complex of vector bundles

OE
� � // ζ|E // // p∗DerZ ;

this follows from the facts recalled at the beginning of this section. We obtain then that c(ζ|E) =
c(p∗DerZ) c(ξ), where ξ = ker(ζ|E → p∗DerZ)/OE is the homology of this complex. By the projec-
tion formula,

p∗η∗(c(ζ) ∩ [W ]) = c(DerZ) ∩ p∗η∗(c(ξ) ∩ [W ]) .

Since dimW = dimV and ξ has rank = codimZ V − 1, the nonzero components of c(ξ) ∩ [W ] have
dimension > dimZ, and therefore p∗η∗(c(ξ) ∩ [W ]) = 0. It follows that π∗η∗(c(ζ) ∩ [W ]) = 0 as
needed. �

3.2. We are thus reduced to proving Lemma 3.1. Recall that Z denotes the codimension r, nonsin-
gular center of the blow-up. We will use the following notation:

• By assumption, there exist r components D1, . . . , Dr of D such that Z is a connected com-
ponent of D1 ∩ · · · ∩Dr. We will denote by D+ the union of D1, . . . , Dr. Note that D+ is a
divisor with normal crossings in a neighborhood of Z.

• D̂ will denote π−1(D), so that D′ = D̂red.

• Similarly, D̂+ will be π−1(D+).

Remark 3.2. The difference between a divisor and its reduction is immaterial here (in characteristic
zero). For a divisor A in a nonsingular variety V , the sections of the sheaf DerV (− logA) may be
defined as those derivation which send a section F corresponding to A to a multiple of F : in other
words, there is an exact sequence

0 // DerV (− logA) // DerV // OA(A)

where (locally) the last map applies a given derivation to F (see e.g. [8], §2). It is straightforward
to verify that if ∂ is a derivation, and Fred consists of the factors of F taken with multiplicity 1,
then ∂(F ) ∈ (F ) if and only if ∂(Fred) ∈ (Fred). Thus DerV (− logA) and DerV (− logAred) coincide

as subsheaves of DerV . Therefore, we may use D̂ in place of D′, and we don’t need to make a
distinction between D̂+ and its reduction. y

Remark 3.3. We recall the following useful description of DerV (− logD) (cf. [15], Proposition 4.8):
if D is the union of distinct components Di, then DerV (− logD) = ∩i DerV (− logDi) within DerV .
Indeed, it suffices to prove that

DerV (− log(A ∪B)) = DerV (− logA) ∩DerV (− logB)

if A and B have no components in common. This amounts to the statement that if F and G have no
common factors, then ∂(FG) ∈ (FG) if and only if ∂(F ) ∈ (F ) and ∂(G) ∈ (G) for all derivations
∂, which is immediate. y

Remark 3.4. In particular, if a divisor A consists of a selection of the components of D, then
DerV (− logD) ⊆ DerV (− logA). Therefore, we have inclusions

DerV (− logD) ⊆ DerV (− logD+) , DerV̂ (− log D̂) ⊆ DerV̂ (− log D̂+) .

Further, the monomorphism DerV (− logD) ↪→ DerV (− logD+) of locally free sheaves remains a
monomorphism after pull-back via π: the determinant of this morphism is nonzero on V , and it
remains nonzero on the blow-up V̂ . y

Lemma 3.5. The (reduction of the) divisor D̂+ is a divisor with normal crossings in a neighborhood

of E, and π∗DerV (− logD+) ∼= DerV̂ (− log D̂+).
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Proof. The first assertion is a simple verification in local coordinates (cf. Lemma 2.3). The second
assertion only need be verified in a neighborhood of E, so it reduces to the case of normal crossings,
where it is straightforward. More details may be found in Theorem 4.1 of [6]. (Also cf. Lemma 1.3
in [4].) �

We may use the isomorphism obtained in Lemma 3.5 to identify π∗DerV (− logD+) and

DerV̂ (− log D̂+). Via this identification, we will verify that π∗DerV (− logD) is contained in

DerV̂ (− log D̂). The corresponding monomorphism of locally free sheaves π∗DerV (− logD) ↪→
DerV̂ (− log D̂) = DerV̂ (− logD′) will give the homomorphism σ whose existence is claimed in
Lemma 3.1.

Note that the sought-for σ appears to go in the wrong direction. The differential of π maps DerV̂
to π∗DerV , and restricts to a homomorphism DerV̂ (− logD+) → π∗DerV (− logD+). This is an
isomorphism as observed in Lemma 3.5, and the claim here is that its inverse restricts to a morphism

σ : π∗DerV (− logD) // DerV̂ (− log D̂) ,

which will then clearly be an isomorphism off E as needed in §3.1.

Lemma 3.6. Via the isomorphism π∗DerV (− logD+) ∼= DerV̂ (− log D̂+), we have the inclusion

π∗DerV (− logD) ⊆ DerV̂ (− log D̂).

Proof. By definition of DerV (− logD) there is an exact sequence

(†) DerV (− logD) // DerV (− logD+) // OD(D)

where the first map is a monomorphism, and the second applies a given logarithmic derivation to a
section F defining D. Pulling back to V̂ gives a complex

(‡) π∗DerV (− logD) // π∗DerV (− logD+) ∼= DerV̂ (− log D̂+) // π∗OD(D) ∼= OD̂(D̂)

The first map remains a monomorphism (Remark 3.4), and maps π∗DerV (− logD) into the kernel

of the second map, which is DerV̂ (− log D̂) by definition of the latter. �

This completes the proof of the first part of Lemma 3.1. Note that σ is a monomorphism of
sheaves, not of vector bundles.

Example 3.7. Let V = P2, and let D be the divisor consisting of three distinct concurrent lines. We
blow-up at the point of intersection p:

p D D

x
1

In affine coordinates centered at p, we may assume D has equation F = x1x2(x1 + x2) = 0. We

choose coordinates x̂1, x̂2 in an affine chart in the blow-up V̂ so that the blow-up map is given by

x1 = x̂1 , x2 = x̂1x̂2 ;

the exceptional divisor E has equation x̂1 = 0, and D̂ is given by the vanishing of F̂ = x̂31x̂2(1 + x̂2)
(the fourth component is at ∞ in this chart); it is a divisor with normal crossings.

We work in the local rings R, R̂ at (0, 0) in both V and V̂ . We can let D+ be the divisor x1x2 = 0,

so that D̂+ has ideal (x̂21x̂2). Bases for DerV (− logD+), DerV̂ (− log D̂+) are

〈x1∂1, x2∂2〉 , 〈x̂1∂̂1, x̂2∂̂2〉
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where ∂i = ∂/∂xi, ∂̂i = ∂/∂x̂i, and, as the reader may verify, the isomorphism

π∗DerV (− logD+)
∼→ DerV̂ (− log D̂+)

maps π∗(x1∂1) to x̂1∂̂1 − x̂2∂̂2 and π∗(x2∂2) to x̂2∂̂2. A derivation a1(x)x1∂1 + a2(x)x2∂2 is in
DerV (− logD) iff

(a1(x)x1∂1 + a2(x)∂2)(x1x2(x1 + x2)) = a1(x)F + a1(x)x21x2 + a2(x)F + a2(x)x1x
2
2 ∈ (F ),

that is, iff

a1(x)x1 + a2(x)x2 ∈ (x1 + x2) .

It follows that a basis for DerV (− logD) is

〈x1∂1 + x2∂2, (x1 + x2)x2∂2〉 ,

and we may represent sequence (†) at (0, 0) as

R⊕R

(
1 0
1 x1+x2

)
// R⊕R

( x2
1x2 x1x

2
2 )

// R/(F )

Tensoring by R̂ gives the corresponding sequence (‡):

R̂⊕ R̂

(
1 0
1 x̂1(1+x̂2)

)
// R̂⊕ R̂

( x̂3
1x̂2 x̂

3
1x̂

2
2 )

// R̂/(F̂ )

which realizes π∗DerV (− logD) as a submodule of

DerV̂ (− log D̂) = ker(
(
x̂31x̂2 x̂31x̂

2
2

)
) = im

((
1 0
1 1 + x̂2

))
In these coordinates, a matrix representation for π∗DerV (− logD) ↪→ DerV̂ (− log D̂) is evidently(
1 0
0 x̂1

)
. y

Remark 3.8. Example 3.7 illustrates the general local situation: dualizing Proposition 4.5 in [19],

one sees that one may always choose local coordinates and bases for DerV (− logD), DerV̂ (− log D̂)

so that the matrix of π∗DerV (− logD) ↪→ DerV̂ (− log D̂) is diagonal, with entries given by powers
of the equation for the exceptional divisor. This will not be needed in the following, but it is a useful
model to keep in mind in reading what follows. y

3.3. We are left with the task of proving the second part of Lemma 3.1, which amounts to the
existence of a certain trivial subbundle and an epimorphism to p∗DerZ for both π∗DerV (− logD)

and DerV̂ (− log D̂). We will prove that there is a commutative diagram of locally free sheaves on E:

OE
� � //

''

DerV̂ (− log D̂)|E

''
π∗DerV (− logD)|E // //

σ|E

55

p∗DerZ

such that the composition OE → p∗DerZ is the zero morphism. The top horizontal morphism will be
a monomorphism of vector bundles, and it follows from the commutativity of the diagram that so is
the leftmost slanted morphism. Similarly, the bottom horizontal morphism will be an epimorphism,
and it follows that so is the rightmost slanted morphism. Thus, the full statement of Lemma 3.1
follows from the existence of this diagram.
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3.3.1. We deal with the epimorphism side first. According to our hypotheses, the center Z of the
blow-up is the transversal intersection (in a neighborhood of Z) of the r components of D+, and is
contained in the other components of D. As Z ⊆ V , we have a natural embedding of DerZ ∼= TZ
as the kernel of the natural map from DerV |Z ∼= TV |Z to the normal bundle NZV .

Lemma 3.9. There is an exact sequence of vector bundles

0 // O⊕rZ
// DerV (− logD+)|Z // DerV |Z // NZV // 0 .

In particular, there is an epimorphism DerV (− logD+)|Z � DerZ .

Proof. We have (see Remark 3.2) an exact sequence

0 // DerV (− logD+) // DerV // OD+(D+)

The image of the rightmost map is the ideal of OD+(D+) defined locally by the partials of a generator
for the ideal of D+. Near Z, where Z is the complete intersection of D1, . . . , Dr, it is easy to verify
that this ideal is isomorphic to ⊕ri=1ODi

(Di). Thus, tensoring by OZ gives an exact sequence

0 // Tor1(OZ ,⊕ri=1ODi(Di)) // DerV (− logD+)|Z // DerV |Z // ⊕ri=1ODi(Di)|Z // 0

(The leftmost term is 0 as DerV is locally free.) The term ⊕ri=1ODi(Di)|Z is NZV , and the map
from DerV |Z is the standard projection TV |Z → NZV . The Tor on the left is the direct sum of
Tor1(OZ ,ODi

(Di)), and it is easy to verify that each such term is ∼= OZ , as claimed. �

Remark 3.10. We can choose local parameters x1, . . . , xn for V at a point of Z such that xi is a
generator for the ideal of Di for i = 1, . . . , r. Then DerV (− logD+) has a basis given by derivations

x1∂1 , . . . , xr∂r , ∂r+1 , . . . , ∂n

where ∂i = ∂/∂xi. With the same coordinates, ∂r+1, . . . ∂n restrict to a basis for DerZ , and the
epimorphism found in Lemma 3.9 acts in the evident way. The kernel is spanned by the restrictions
of xi∂i, i = 1, . . . , r; these are the r trivial factors appearing on the left in the sequence in Lemma 3.9.

Also note that the ‘Euler derivation’ x1∂1 + · · · + xr∂r spans a trivial subbundle OZ ↪→ O⊕rZ of
the kernel. Thus, we have a complex of vector bundles

OZ
� � // DerV (− logD+)|Z // // DerZ

on Z. Pulling back to E, this gives a complex of vector bundles on E:

OE
� � // π∗DerV (− logD+)|E // // π∗DerZ .

We have to verify that the same occurs for π∗DerV (− logD) and DerV̂ (− log D̂). y

Consider DerV (− logD). We have (Remark 3.4) inclusions

DerV (− logD) ⊆ DerV (− logD+) ⊆ DerV .

Restricting to Z, and in view of Lemma 3.9, we get morphisms

DerV (− logD)|Z // DerV (− logD+)|Z // // DerZ .

Claim 3.11. The composition DerV (− logD)|Z → DerZ is an epimorphism.

Proof. Working with local parameters as in Remark 3.10, it suffices to note that the derivations
∂r+1, . . . , ∂n are in DerV (− logD): this is clear, since by assumption D admits a local generator of
the form

x1 · · ·xr G(x1, . . . , xr).

�
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Pulling back to E and using Lemma 3.6 we get morphisms

π∗DerV (− logD)|E
σ|E // 22 22DerV̂ (− log D̂)|E // π∗DerV (− logD+)|E // // p∗DerZ

and this yields the commutative triangle on the right in the diagram at the beginning of the section.

3.3.2. Finally, we have to deal with the triangle on the left.

Lemma 3.12. Let A be a nonsingular hypersurface of a nonsingular variety V . Then there is an
exact sequence of vector bundles

0 // OA // DerV (− logA)|A // DerA // 0 .

Proof. This is a particular case of Lemma 3.9. �

Remark 3.13. Applying this lemma to E ⊆ V̂ gives a distinguished copy of OE in DerV̂ (− logE)|E .
Adopting local parameters at a point of Z as in Remark 3.10, we can choose coordinates

x̂1 , x̂2 , . . . , x̂r , x̂r+1 , . . . , x̂n

at a point of E in a chart of the blow-up V̂ so that the blow-up map is given by
x1 = x̂1

xi = x̂1x̂i i = 2, . . . , r

xj = x̂j j = r + 1, . . . , n

The exceptional divisor is given by x̂1 = 0. Then a basis for DerV̂ (− logE) at this point is

x̂1∂̂1 , ∂̂2 , . . . , ∂̂n

where ∂̂i = ∂/∂x̂i. The distinguished copy OE ⊆ DerV̂ (− logE) found in Lemma 3.12 is spanned by

x̂1∂̂1. y

Now recall (Remark 3.4) that DerV̂ (− log D̂) ⊆ DerV̂ (− logE).

Claim 3.14. The distinguished OE ⊆ DerV̂ (− logE)|E is contained in DerV̂ (− log D̂)|E.

Proof. We work in coordinates as in Remark 3.10 and 3.13. By hypothesis, D is given analytically
by the vanishing of F = x1 · · ·xr · G(x1 · · ·xr), where G is homogeneous. In the chart considered

above in the blow-up, D̂ is therefore given by the vanishing of

F̂ = x̂m1 x̂2 · · · x̂r G(1, x̂2, . . . , x̂r)

where m is the multiplicity of D along Z. We then see that

(x̂1∂̂1)F̂ = mx̂m1 x̂2 · · · x̂r G(1, x̂2, . . . , x̂r) = mF̂ ∈ (F̂ ) :

this shows that x̂1∂̂1 ∈ DerV̂ (− log D̂), as claimed. �

Since DerV̂ (− log D̂) ⊆ DerV̂ (− log D̂+), and the latter is ∼= π∗DerV (− logD+), we can view the
distinguished OE as a subsheaf of π∗DerV (− logD+)|E . Chasing coordinates, it is straightforward
to check that

x̂1∂̂1 7→ x1∂1 + · · ·+ xr∂r :

that is, this copy of OE corresponds to the ‘Euler derivation’ identified in Remark 3.10. Further, we
see that it is also contained in π∗DerV (− logD)|E : indeed, since in the chosen analytic coordinates F
is homogeneous (up to factors not vanishing along Z), the Euler derivation acts on F by multiplying
it by its degree.
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At this point we have the following situation:

OE //% �
,,

π∗DerV (− logD)|E
σ|E // DerV̂ (− log D̂)|E // π∗DerV (− log D̂+)|E

This yields the commutative triangle on the left in the diagram at the beginning of the sec-
tion. (The above construction shows that the monomorphisms from OE to DerV̂ (− log D̂)|E and

π∗DerV (− log D̂+)|E are monomorphisms of vector bundles, as needed.) The composition with the
projection to p∗DerZ is 0 as noted in Remark 3.10, so this completes the proof of Lemma 3.1.
Claim 2.4 follows from Lemma 3.1 as shown in §3.1, so this concludes the proof of Theorem 1.1.

4. Further remarks and examples

4.1. An example. We illustrate Theorem 1.1 by computing the Chern class of a sheaf of logarithmic
derivations in a simple case. Any value Theorem 1.1 may have lies in the contrast between the
standard computation, by means of the basic sequence defining the sheaf, and the computation
using Chern-Schwartz-MacPherson classes, which has a very different, ‘combinatorial’ flavor.

We assume D consists of m ≥ 2 nonsingular components Di, each of class X, meeting pairwise
transversally along a codimension-2 nonsingular complete subvariety Z.

—Computation using cSM-classes. As D = ∪iDi, and since all components meet along Z,
we have

11D = 11Z +
∑
i

11DirZ = (
∑
i

11Di)− (m− 1)11Z ,

and hence

11VrD = 11V −
∑
i

11Di
+ (m− 1)11Z .

Since V , all Di, and Z are nonsingular, the basic normalization property of cSM classes (§2.1) gives

cSM(11VrD) = c(TV ) ∩ [V ]−
∑
i

c(TDi) ∩ [Di] + (m− 1)c(TZ) ∩ [Z] .

We are assuming that all components have the same class X, and hence Z has class X ·X. Thus,
this gives

cSM(11VrD) = c(TV )

(
1−

m∑
i=1

X

1 +X
+ (m− 1)

X2

(1 +X)2

)
∩ [V ]

According to Theorem 1.1, this class equals c(DerV (− logD)) ∩ [V ]. That is,

c(DerV (− logD)) =
c(TV ) (1− (m− 2)X)

(1 +X)2
.

Standard computation. The basic sequence recalled in Remark 3.2 may be completed to

0 // DerV (− logD) // DerV // OD(D) // OJD(D) // 0 ,

where JD is the singularity subscheme (or Jacobian subscheme) of D. Therefore,

c(DerV (− logD)) =
c(DerV )

c(OD(D))
c(OJD(D)) =

c(TV )

1 +D
c(OJD(D)) .

In the case at hand, we are assuming that D is defined by a section f1 · · · fm of O(mX); Z is defined
by (say) f1 = f2 = 0, meeting transversally at every point of Z; and fi = (aif1 + bif2) for i ≥ 3,
without multiple components. Thus, f1 · · · fm = P (f1, f2) for a homogeneous polynomial P (s, t)
with constant coefficients. As the differentials df1 and df2 are assumed to be linearly independent
everywhere along Z, the ideal of JD is generated by ∂P

∂s (f1, f2) and ∂P
∂t (f1, f2), and these have no
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component in common. It follows that JD is a complete intersection of two sections of O((m−1)X),
so OJD is resolved by a Koszul complex:

0 // OV (−2(m− 1)X) // OV (−(m− 1)X)⊕ OV (−(m− 1)X) // OV // OJD // 0

and twisting by OV (D) = OV (mX) gives the exact sequence

0 // OV ((−m+ 2)X) // OV (X)⊕ OV (X) // OV (D) // OJD(D) // 0 .

Thus

c(OJD(D)) =
c(OV (D)) c(O(−(m− 2))X)

c(OV (X))2
=

(1 +D)(1− (m− 2)X)

(1 +X)2
.

Taking this into account in the expression for c(DerV (− logD)) given above, we recover the result
of the cSM computation. y

While this may be largely a matter of taste, the standard computation appears to us to involve
subtler information than the alternative combinatorial computation via cSM classes afforded by
applying Theorem 1.1. The point is that the cSM class already includes information on the singularity
subscheme JD: see [1] for the precise relation. Computing the cSM class, which is straightforward
for a hypersurface arrangement, takes automatically care of accounting for the total Chern class
of OJD(D).

4.2. A projection formula. If E is a vector bundle on a scheme X, and α : Y → X is a proper
morphism, then for any class A in the Chow group of Y we have

α∗(c(α
∗E ) ∩A) = c(E ) ∩ α∗(A) .

This is a basic result on Chern classes, see Theorem 3.2 (c) in [9]. On a nonsingular variety, a
notion of total Chern class is available for all coherent sheaves: this follows from the isomorphism
K0(V ) ∼= K0(V ) for V nonsingular ([9], §15.1) and the Whitney formula. However, a straightforward
projection formula as in the case of vector bundles does not hold for arbitrary coherent sheaves.

Example 4.1. Let V be nonsingular, let X,Y ↪→ V be irreducible hypersurfaces, and let i : X ↪→ V
be the inclusion. From the exact sequence

0 // OV (−X) // OV // OX // 0

it follows that c(OX) = 1
1−X , and similarly c(OY ) = 1

1−Y . As i∗(OX) = OX , we see that

i∗(c(i
∗OX) ∩ [X]) = i∗([X]) 6= c(OX) ∩ i∗([X]) =

[X]

1−X
:

the projection formula does not hold in this case. On the other hand, i∗(OY ) = OX∩Y , and X ∩ Y
is a divisor in X with bundle OX(X ∩ Y ) = i∗OV (Y ); therefore,

i∗(c(i
∗OY ) ∩ [X]) = i∗

(
[X]

1− i∗Y

)
=

[X]

1− Y
= c(OY ) ∩ i∗([X]) :

the projection formula does hold in this case. y

The difference between the two cases considered in this example is a matter of Tor functors:

TorOV
1 (OX ,OX) ∼= OX(−X)

is not trivial, while TorOV
1 (OX ,OY ) vanishes. It is essentially evident from the definitions that for a

coherent sheaf F on V , and a morphism α : W → V ,

α∗c(F ) =
∏
i≥0

c(TorOV
i (OW ,F ))(−1)

i

= c(α∗F ) ·
∏
i≥1

c(TorOV
i (OW ,F ))(−1)

i

,

and in particular c(α∗F ) = α∗c(F ) if the higher Tors vanish. In this case (for example, in the
case of vector bundles) the projection formula holds if α is proper. More generally, the projection
formula holds if α∗ maps to 1 the total Chern classes of the higher Tors.
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4.3. Now recall the situation of this paper, and particularly the blow-up considered in Claim 2.4
and §3: D is a hypersurface arrangement in a nonsingular variety V , and Z is an intersection of
minimal dimension of components of D. In fact, Z = D1∩· · ·∩Dr, where D1, . . . , Dr are components
of D meeting with normal crossings in a neighborhood of Z. We denote by D+ the union of these
components, and we have observed (Remark 3.4) that DerV (− logD) ⊆ DerV (− logD+).

The sections obtained by applying the derivations in DerV (− logD+) to a section F defining D,
together with F , define a subscheme J+D of OD, which should be viewed as a ‘modified Jacobian
subscheme’ of the hypersurface arrangement D (depending on the choice of the subdivisor D+). We
consider the coherent sheaf OJ+D(D) in V .

Finally, recall that π : V̂ → V denotes the blow-up of V along Z.

Claim 4.2. The formula in Theorem 1.1 is implied by the statement that, for all blow-ups as above,
OJ+D(D) satisfies the projection formula with respect to the blow-up map π:

π∗(c(π
∗OJ+D(D)) ∩ [V̂ ]) = c(OJ+D(D)) ∩ [V ] .

Proof. Arguing as in §2, we only need to deal with the case of a single blow-up; we will show that
the given formula is equivalent to the formula in Claim 2.4.

Restricting the basic sequence recalled in Remark 3.2 to D+ gives an exact sequence

0 // DerV (− logD) // DerV (− logD+) // OD(D)

and the image of the last morphism is the ideal generated by applying the derivations from
DerV (− logD+) to F ; this ideal defines J+D, so we have an exact sequence

0 // DerV (− logD) // DerV (− logD+) // OD(D) // OJ+D(D) // 0

on V . Notice that this implies that

c(DerV (− logD)) =
c(DerV (− logD+))

1 +D
c(OJ+D(D)) .

Now we claim that (with notation as in §3) there is an exact sequence

(�) 0 // DerV̂ (− log D̂) // π∗DerV (− logD+) // π∗OD(D) // π∗OJ+D(D) // 0 .

Indeed, pulling back the last terms of the previous sequence to V̂ gives the last terms of (�), by right-

exactness of − ⊗OV
OV̂ ; via the isomorphisms π∗DerV (− logD+) ∼= DerV̂ (− log D̂+) (Lemma 3.5)

and π∗OD(D) ∼= OD̂(D̂), the morphism in the middle is seen to act by applying derivations from

DerV̂ (− log D̂) to a section defining D̂. Hence its kernel is DerV̂ (− log D̂), as needed for (�). From
(�), it follows that

c(DerV̂ (− log D̂)) =
c(π∗DerV (− logD+))

1 + π∗D
c(π∗OJ+D(D)) ,

and hence, applying the ordinary projection formula (as DerV (− logD+) is locally free)

π∗(c(DerV̂ (− log D̂)) ∩ [V̂ ]) =
c(DerV (− logD+))

1 +D
π∗(c(π

∗OJ+D(D)) ∩ [V̂ ]) .

Comparing with the previous equality of Chern classes, we see that the projection formula for
OJ+D(D),

π∗(c(π
∗OJ+D(D)) ∩ [V̂ ]) = c(OJ+D(D)) ∩ [V ]

is equivalent to

π∗(c(DerV̂ (− log D̂)) ∩ [V̂ ]) = c(DerV̂ (− log D̂)) ∩ [V ] ,

that is the formula in Claim 2.4, as claimed. (As pointed out in Remark 3.2, we can replace D̂ for
D′ in Claim 2.4.) �
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By Claim 4.2, an independent proof of the projection formula for OJ+D(D) would give an alterna-
tive proof of Theorem 1.1. Note that the relevant Tor does not vanish in general; the task amounts
to showing that its Chern class pushes forward to 1. We were not able to construct a more direct
proof of this fact.

Remark 4.3. Xia Liao has shown ([12]) that the equality in Theorem 1.1, for any divisor D, is
equivalent to a projection formula involving the blow-up along the (ordinary) Jacobian subscheme
of D. y
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