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PEDAL FOLIATIONS AND GAUSS MAPS OF HYPERSURFACES IN
EUCLIDEAN SPACE

SHYUICHI IZUMIYA AND MASATOMO TAKAHASHI

Abstract. The singular point of the Gauss map of a hypersurface in Euclidean space is
the parabolic point where the Gauss-Kronecker curvature vanishes. It is well-known that the
contact of a hypersurface with the tangent hyperplane at a parabolic point is degenerate.
The parabolic point has been investigated in the previous research by applying the theory
of Lagrangian or Legendrian singularities. In this paper we give a new interpretation of the
singularity of the Gauss map from the view point of the theory of wave front propagations.

1. Introduction

The singular point of the Gauss map of a hypersurface in Euclidean space is the parabolic
point of the hypersurface where the Gauss-Kronecker curvature vanishes [1, 12]. There have been
many researches on singularities of Gauss maps [2, 3, 17, 19]. The pedal of the hypersurface (cf.
[6, 12]) is the wavefront set whose singular points are the same as the parabolic points of the
hypersurface. Actually, we can show that the pedal is defined in Sn−1×R. We call it a cylindrical
pedal (or, dual hypersurface) of the hypersurface [5, 12, 20]. By definition, the Gauss map is
the Sn−1-component of the cylindrical pedal. In this paper we consider the R-component of the
cylindrical pedal which defines a function on the hypersurface. We call it a pedal height function
on the hypersurface. The pedal height function is traditionally called the support function of
the hypersurface with respect to the origin. We investigate, in this paper, geometric meanings
of the singularities of the pedal height function. A pedal foliation is the foliation defined by the
level set of the pedal height function.

On the other hand, we investigated relationships between caustics and wave front propagations
as an application of the theory of graphlike Legendrian unfoldings in [11, 14]. The image of the
pedal foliation by the Gauss map is considered to be a wave front propagation of a certain
graphlike Legendrian unfolding (cf. §5). By applying the results in [11, 14], we obtain a new
interpretation of the singularity of the Gauss map from the view point of the theory of wave front
propagations (cf. §6). In §4, we briefly review the essential part of the theories of Lagrangian
singularities and graphlike Legendrian unfoldings which we use in this paper. Especially, we give
a correct proof of Proposition 4.1 in [14], which is one of the key propositions in the theory of
graphlike Legendrian unfoldings (Proposition 4.3). In §6 we focus on the case for surfaces in R3.
We give a classification of the surface with the constant pedal height function (i.e., the most
degenerate case). Moreover, we give extra new conditions which characterize cusps of Gauss
maps (cf. [2]).

We shall assume throughout the whole paper that all maps and manifolds are C∞ unless the
contrary is explicitly stated.
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2. Hypersurfaces in Euclidean space

In this section we review the classical theory of differential geometry on hypersurfaces in
Euclidean space and introduce some singular mappings associated to geometric properties of
hypersurfaces.

Let X : U → Rn be an embedding, where U ⊂ Rn−1 is an open subset. We denote that
M = X(U) and identify M and U through the embedding X. The tangent space of M at
p = X(u) is

TpM = 〈Xu1
(u),Xu2

(u), . . . ,Xun−1
(u)〉R.

For any a1,a2, . . . ,an−1 ∈ Rn, we define

a1 × a2 × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an−11 an−12 · · · an−1n

∣∣∣∣∣∣∣∣∣∣∣
,

where {e1, . . . , en} is the canonical basis of Rn and ai = (ai1, a
i
2, . . . , a

i
n). It follows that we can

define the unit normal vector field

n(u) =
Xu1(u)× · · · ×Xun−1(u)

‖Xu1(u)× · · · ×Xun−1(u)‖

along X : U → Rn. A map G : U → Sn−1 defined by G(u) = n(u) is called the Gauss map of
M = X(U). Since n(u) is the unit normal vector of Sn−1, we can identify TpM and Tn(u)S

n−1.
Under this identification, the derivative of the Gauss map dG(u) can be interpreted as a linear
transformation on the tangent space TpM at p = X(u). We call the linear transformation
Sp = −dG(u) : TpM → TpM the shape operator (or Weingarten map) of M = X(U) at
p = X(u). We denote the eigenvalues of Sp by κi(p) (i = 1, . . . , n − 1) which we call principal
curvatures. We call the eigenvector of Sp the principal direction. By definition, κi(p) is a principal
curvature if and only if det(Sp − κi(p)I) = 0. The Gauss-Kronecker curvature of M = X(U) at
p = X(u) is defined to be K(p) = detSp = Πn−1

i=1 κi(p).
We say that a point p = X(u) ∈M is an umbilical point if Sp = κ(p)1TpM . We also say that

M is totally umbilical if all points of M are umbilical. Then we have the following proposition
(cf. [9, page 147, Proposition 4] for n = 3). For general dimensions, the proof is given by the
same method as that of [9].

Proposition 2.1. Suppose thatM = X(U) is totally umbilical, then κ(p) is a constant κ. Under
this condition, we have the following classification:

(1) If κ 6= 0, then M is a part of a hypersphere.
(2) If κ = 0, then M is a part of a hyperplane.

In the extrinsic differential geometry, totally umbilical hypersurfaces are considered to be the
model hypersurfaces in Euclidean space. Since the set {Xu1

, . . . ,Xun−1
} is linearly independent,

we induce the Riemannian metric (first fundamental form) ds2 =
∑n−1
i,j=1 gijduiduj on M =

X(U), where gij(u) = 〈Xui(u),Xuj (u)〉 for any u ∈ U . We define the second fundamental
invariant by hij(u) = 〈−nui(u),Xuj (u)〉 for any u ∈ U . We have the following Weingarten
formula:

Gui(u) = −
n−1∑
j=1

hji (u)Xuj (u),
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where (hji (u)) = (hik(u))(gkj(u)) and (gkj(u)) = (gkj(u))−1. By the Weingarten formula, the
Gauss-Kronecker curvature is given by

K(p) =
det(hij(u))

det(gαβ(u))
.

For a hypersurface X : U → Rn, we say that a point u ∈ U or p = X(u) is a flat point (or, a
geodesic point) if hij(u) = 0 for all i, j. Therefore, p = X(u) is a flat point if and only if p is an
umbilical point with the vanishing principal curvature. We say that a point p = X(u) ∈M is a
parabolic point if K(p) = 0.

The cylindrical pedal of M = X(U) is defined by

CPM : U → Sn−1 × R ; CPM (u) = (n(u), 〈X(u),n(u)〉).
We remark that CPM is called the dual of M = X(U) (cf. [5, 7]). For a plane curve γ(s),
P eγ(s) = 〈γ(s),n(s)〉n(s) is called the pedal curve of γ (cf. [6]), so that we call CPM the
cylindrical pedal. We have the following result (cf. [12]):

Proposition 2.2. Let M = X(U) be a hypersurface in Rn. Then the following are equivalent:
(1) M is totally umbilical with κ = 0.
(2) The Gauss map of M = X(U) is a constant map.
(3) The cylindrical pedal of M = X(U) is a point.
(4) M is a part of a hyperplane.

We can easily show that a point p = X(u) is a parabolic point of M = X(U) (i.e., a singular
point of the Gauss map) if and only if it is a singular point of the cylindrical pedal. Therefore
we have the following proposition:

Proposition 2.3. Let M = X(U) be a hypersurface in Rn. Then the following are equivalent:
(1) p = X(u) is a parabolic point of M (i.e., K(u) = 0).
(2) p = X(u) is a singular point of the Gauss map of M = X(U).
(3) p = X(u) is a singular point of the cylindrical pedal of M = X(U).

The Gauss map G(u) is the first component of the cylindrical pedal CPM (u). We have a
natural question as follows:
Question. What kind of information are provided by the second component of the cylindrical
pedal?

We define a function hπ : U → R by hπ(u) = 〈X(u),n(u)〉. It has been called hπ the support
function of M = X(U) with respect to the origin. Since hπ is the second component of the
cylindrical pedal, we call it the pedal height function of M = X(U) here. We remark that hπ is
invariant under the SO(n)-action and not invariant under the Euclidean motions.

3. Pedal foliations

A pedal foliation is the foliation in U (or M = X(U)) defined by the level set of the pedal
height function hπ. We write

Fπ(M) = {(hπ)−1(t0) | hπ(u0) = t0 ∈ R}.
as the pedal foliation and denote by Lπu0

(M) the leaf through u0 with hπ(u0) = t0. We call
Lπu0

(M) a pedal leaf of M = X(U) through u0 ∈ U . The pedal foliation might be singular in
general. The singular point of the pedal foliation is a critical point of the pedal height function
hπ.

In order to explain the critical point of the pedal height function hπ, we decompose X(u)

into the tangent component XT (u) and the normal component X⊥(u). For any p = X(u), we
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have X(u) = XT (u) +X⊥(u) where XT (u) ∈ TpM and X⊥(u) ∈ TpM⊥. Then we have the
following proposition.

Proposition 3.1. Let X : U → Rn be a hypersurface. Then u ∈ U is a singular point of the
pedal function hπ if and only if XT (u) ∈ KerSp.

Proof. By definition, there exist µi (i = 1, . . . , n−1) such that XT (u) =
∑n−1
i=1 µiXui(u). Since

we have 〈X(u),Xuj (u)〉 =
∑n−1
i=1 µigij(u), we have

∑n−1
j=1 g

kj(u)〈X(u),Xuj (u)〉 = µk. It follows
that

XT (u) =

n−1∑
i=1

n−1∑
j=1

gij(u)〈X(u),Xuj (u)〉Xui(u).

By the Weingarten formula Gui(u) = −
∑n−1
j=1 h

j
i (u)Xuj (u), we have

∂hπ

∂ui
(u) = 〈X(u),Gui(u)〉 = −

n−1∑
j=1

hji (u)〈X(u),Xuj (u)〉

= −
n−1∑
j=1

n−1∑
k=1

hik(u)gkj(u)〈X(u),Xuj (u)〉 = −
n−1∑
k=1

hik(u)µk.

Therefore, we have
n−1∑
i=1

gji(u)
∂hπ

∂ui
(u) = −

n−1∑
k=1

(
n−1∑
i=1

gji(u)hik(u)

)
µk = −

n−1∑
k=1

hjk(u)µk.

Thus, ∂hπ/∂ui(u) = 0 for i = 1, . . . , n− 1 if and only if
∑n−1
k=1 h

j
k(u)µk = 0 for j = 1, . . . , n− 1.

This completes the proof. 2

Then we have the following corollary.

Corollary 3.2. Let p = X(u) be a singular point of hπ. Then X(u) is a normal vector of M
at p or K(p) = 0 and XT (u) ∈ KerSp.

Proof. If XT (u) 6= 0, then KerSp 6= ∅. This means that K(p) = 0. If XT (u) = 0, then
X(u) = X⊥(u). 2

We can show that the pedal foliation is non-singular in generic.

Corollary 3.3. Let X : U → Rn be an embedding from an open region U ⊂ Rn−1. Suppose that
p = X(u) is a singular point of hπ and non-geodesic point (i.e., non-flat umbilical point). Then,
under a small Euclidean motion of M = X(U), hπ is non-singular at p = X(u).

Proof. By the assumption, KerSp 6= TpM. If K(p) 6= 0, the position vector X(u) is not a
normal vector at p = X(u) under a small Euclidean motion of M.

Suppose that K(p) = 0. If we rotateM = X(U) around the normal direction (i.e, fixining the
direciton of n(u)) at the point p = X(u), then p = X⊥(u) +XT (u) (i.e., of course XT (u)) does
not move but KerSp moves. Therefore, we have XT (u) 6∈ KerSp by a small Euclidean motion
of M = X(U). 2

By the above corollary, the pedal foliation is non-singular in generic at least locally, so that
we are interested in differential geometric properties of leaves.

We now consider the restriction G|Lπu0
(M) of the Gauss map G on the pedal leaf through

u0 ∈ U , which is called the pedal Gauss map of M = X(U) at u0 ∈ U.



88 SHYUICHI IZUMIYA AND MASATOMO TAKAHASHI

4. Graphlike Legendrian unfoldings

In order to apply the theories of Lagrangian singularities and graphlike Legendrian unfold-
ings, we explain the essential parts of the theories which we need in this paper. The detailed
descriptions and the results are referred to be the articles [1, 11, 14, 22, 23].

Firstly, we consider the cotangent bundle π : T ∗Rn → Rn. Let (x, p) = (x1, . . . , xn, p1, . . . , pn)
be the canonical coordinate on T ∗Rn. Then the canonical symplectic structure on T ∗Rn is given
by the canonical two form ω =

∑n
i=1 dpi ∧ dxi. Let i : L ⊂ T ∗Rn be a submanifold. We say

that i is a Lagrangian submanifold if dimL and i∗ω = 0. Let F : (Rk × Rn, 0) → (R, 0) be an
n-parameter unfolding of function germs. We say that F is a Morse family of functions if the
map germ

∆F =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn, 0)→ (Rk, 0)

is a non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn, 0). In this case, we have a
smooth n-dimensional submanifold germ C(F ) = (∆F )−1(0) ⊂ (Rk × Rn, 0) and a map germ
L(F ) : (C(F ), 0)→ T ∗Rn defined by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

We can show that L(F )(C(F )) is a Lagrangian submanifold germ. We say that F is a generating
family of L(F )(C(F )).

We now define an equivalence relation among Lagrangian submanifold germs. Let F,G :
(Rk × Rn, 0) → (R, 0) be Morse families of functions. Then the Lagrangian submanifold
germs (L(F )(C(F )),0) and (L(G)(C(G)),0) are said to be Lagrangian equivalent if there ex-
ist a symplectic diffeomorphism germ τ̂ : (T ∗Rn, p) → (T ∗Rn, p′) and a diffeomorphism germ
τ : (Rn, π(p))→ (Rn, π(p′)) such that τ̂(L(F )(C(F )) = L(G)(C(G)) and π ◦ τ̂ = τ ◦ π, where τ̂
is a symplectic diffeomorphism germ if τ̂∗ω = ω. By using the Lagrangian equivalence, we can
define the notion of Lagrangian stability for Lagrangian submanifold germs by the ordinary way
(see, [1, Part III]).

We can interpret the Lagrangian equivalence by using the notion of generating families. Let
Ex be the ring of function germs of x = (x1, . . . , xn) variables at the origin. Let F,G : (Rk ×
Rn, 0) → (R, 0) be function germs. We say that F and G are P -R+-equivalent if there exist a
diffeomorphism germ Φ : (Rk × Rn, 0) → (Rk × Rn, 0) of the form Φ(q, x) = (φ1(q, x), φ2(x))
and a function germ h : (Rn, 0) → (R, 0) such that G(q, x) = F (Φ(q, x)) + h(x). For any
F1 : (Rk × Rn, 0) → (R, 0) and F2 : (Rk′ × Rn, 0) → (R, 0), Let F : (Rk × Rn, 0) → (R, 0) be a
function germ. We say that F is an R+-versal deformation of f = F |Rk×{0} if

Eq = Jf +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R

+ 〈1〉R,

where

Jf =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q)

〉
Eq
.

Then we have the following theorem[1, page 304 and 325]:

Theorem 4.1. Let F : (Rk × Rn, 0) → (R, 0) and G : (Rk × Rn, 0) → (R, 0) be Morse families
of functions. Then we have the following:
(1) L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only if F and G are P -R+-
equivalent.
(2) L(F )(C(F )) is a Lagrange stable if and only if F is an R+-versal deformation of f .



PEDAL FOLIATIONS AND GAUSS MAPS OF HYPERSURFACES IN EUCLIDEAN SPACE 89

In [1], the assertion (1) of the above theorem is a slightly different. It is used the notion of
stable P -R+-equivalences among Morse families. However, the above assertion is enough for our
situation.

Secondly, we now give a brief review on the theory of graphlike Legendrian unfoldings. The
notion of graphlike Legendrian unfoldings is defined in the projective cotangent bundle π :
PT ∗(Rn×R)→ Rn×R (cf. [11]). We remark that the affine open subset Uτ = {((x, t), [ξ : τ ])|τ 6=
0} of PT ∗(Rn×R) is canonically identified with the 1-jet space J1(Rn,R), see in [11, 14]. For a
Morse family of functions F : (Rk×Rn, 0)→ (R, 0), we define a map LF : (C(F ), 0)→ J1(Rn,R)
by

LF (q, x) =

(
x, F (q, x),

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Then (LF (C(F )),0) is a Legendrian submanifold germ which is called a graphlike Legendrian
unfolding. We call the set germ W (LF ) = π(LF (C(F )) the graphlike wave front of LF (C(F )).
A graphlike Legendrian unfolding (LF (C(F )),0) is said to be non-degenerate if F |C(F ) is non-
singular. We say that F is a generating family of the graphlike Legendrian unfolding LF (C(F )).
We can use all equivalence relations introduced in the previous paper [13, 14, 15]. Especially,
the S.P+-Legendrian equivalence among graphlike Legendrian unfoldings was given in the above
context. Since we do not need the definition here, we omit to give the definition (see [13]). We
also consider the stability of graphlike Legendrian unfolding with respect to S.P+ -Legendrian
equivalence which is analogous to the stability of Lagrangian submanifold germs with respect to
Lagrangian equivalence (cf. [1, Part III]). We denote that F (q, x, t) = F (q, x)− t and f(q, t) =
f(q)−t for f(q) = F (q, 0).We can represent the extended tangent space of f : (Rk×R, 0)→ (R, 0)
relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
E(q,t)

+ 〈1〉R.

For an unfolding F : (Rk × Rn, 0)→ (R, 0) of f, F is S.P+-K-versal deformation of f if

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R
.

Then we have the following theorem [11, 14, 23].

Theorem 4.2. Let F : (Rk × Rn, 0)→ (R, 0) be a Morse family of functions. Then LF (C(F ))
is S.P+-Legendre stable if and only if F is a S.P+-K-versal deformation of f.

We gave a proof of the following proposition in [14]. However, there are some gaps on the
arguments of the proof. Here we give a correct proof of Proposition 4.1 in [14].

Proposition 4.3. Let F : (Rk × Rn, 0) → (R, 0) be a Morse family of functions. If LF (C(F ))
is a S.P+-Legendre stable, then L(F )(C(F )) is a Lagrange stable.

Proof. Since LF (C(F )) is a S.P+-Legendre stable,

dimR
E(q,t)〈

∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
E(q,t)

+ 〈1〉R
<∞.

It follows that dimREq/〈 ∂f∂q1 (q), . . . , ∂f∂qk (q), f(q)〉Eq < ∞, namely, f is a K-finitely determined
(see the definition [8, 18]). It is a well-known result that f is a K-finitely determined if and only if
f is an R+-finitely determined, see [8]. Under the condition that f is an R+-finitely determined,
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F is an R+-versal deformation of f if and only if F is an R+-transversal deformation of f ,
namely, there exists a number ` ∈ N such that

Eq = Jf +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R

+ 〈1〉R +M`+1
q .(1)

Hence it is enough to show the equality (1) by Theorem 4.1. Let g(q) ∈ Eq. Since g(q) ∈ E(q,t),
there exist λi(q, t), µ(q, t) ∈ E(q,t) (i = 1, . . . , k) and c, cj ∈ R (j = 1, . . . , n) such that

g(q) =

k∑
i=1

λi(q, t)
∂f

∂qi
(q) + µ(q, t)(f(q)− t) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0).(2)

Differentiating the equality (2) with respect to t, we have

0 =
k∑
i=1

∂λi
∂t

(q, t)
∂f

∂qi
(q) +

∂µ

∂t
(q, t)(f(q)− t)− µ(q, t).(3)

We put t = 0 in (3), 0 =
∑k
i=1(∂λi/∂t)(q, 0)(∂f/∂qi)(q) + (∂µ/∂t)(q, 0)f(q) − µ(q, 0). Also we

put t = 0 in (2), then

g(q) =

k∑
i=1

λi(q, 0)
∂f

∂qi
(q) + µ(q, 0)f(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0)

=

k∑
i=1

αi(q)
∂f

∂qi
(q) +

∂µ

∂t
(q, 0)f2(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),(4)

for some αi ∈ Eq, i = 1 . . . , k. Again differentiating (3) with respect to t and put t = 0, then

0 =

k∑
i=1

∂2λi
∂t2

(q, 0)
∂f

∂qi
(q) +

∂2µ

∂t2
(q, 0)f(q)− 2

∂µ

∂t
(q, 0).

Hence (4) is equal to

k∑
i=1

βi(q)
∂f

∂qi
(q) +

1

2

∂2µ

∂t2
(q, 0)f3(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),

for some βi ∈ Eq, i = 1, . . . , k. Inductively, we take `-times differentiate (3) with respect to t and
put t = 0, then we have

g(q) =

k∑
i=1

γi(q)
∂f

∂qi
(q) +

1

`!

∂`µ

∂t`
(q, 0)f `+1(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),

for some γi ∈ Eq, i = 1, . . . , k. It follows that g(q) is contained in the right hand of (1). This
completes the proof. 2

We consider a relationship of the equivalence relations between Lagrangian immersion germs
and corresponding graphlike Legendrian unfoldings. Let LF : (C(F ), 0) → (J1(Rn,R), p0) and
LG : (C(G), 0)→ (J1(Rn,R), q0) be graphlike Legendrian unfolding germs. We say that graph-
like wave fronts W (LF ) and W (LG) are S.P+-diffeomorphic if there exists a diffeomorphism
germ Φ : (Rn × R, π(p0)) → (Rn × R, π(q0)) of the form Φ(x, t) = (φ1(x), t + α(x)) such that
Φ(W (LF )) = W (LG). Then we have the following result:
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Theorem 4.4. ([14]) Suppose that L(F )(C(F )) and L(G)(C(G)) are Lagrange stable. Then
Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and
only if graphlike wave fronts W (LF ) and W (LG) are S.P+-diffeomorphic.

5. Height functions

We respectively define two functions

H : U × Sn−1 → R

by H(u,v) = 〈X(u),v〉 and
H̃ : U × (Sn−1 × R)→ R

by H̃(u, (v, t)) = H(u,v) − t = 〈X(u),v〉 − t. We call H a family of height functions and H̃
a family of extended height functions of M = X(U). We denote that hv(u) = H(u,v) and
h̃(v,t)(u) = H̃(u, (v, t)). By the straightforward calculations, we can show the following proposi-
tion:

Proposition 5.1. Let M = X(U) be a hypersurface in Rn. Then
(1) (∂hv/∂ui)(u) = 0 (i = 1, . . . , n− 1) if and only if v = ±n(u).
(2) h̃(v,t)(u) = (∂h̃(v,t)/∂ui)(u) = 0 (i = 1, . . . , n−1) if and only if (v, t) = ±(n(u), 〈n(u),X(u)〉).

For v = G(u), we have

∂2H

∂ui∂uj
(u,v) = 〈Xuiuj (u),v〉 = −〈Xui(u),nuj (u)〉 = hij(u).

Therefore, for any v = G(u), det (H(hv)(u)) = det((∂2H/∂ui∂uj)(u,v)) = 0 if and only if
K(p) = 0 (i.e., p = X(u) is a parabolic point), where H(hv)(u) is the Hessian matrix of hv at a
point u. By the above calculation, we have the following results [12]:

Proposition 5.2. For any p = X(u), we have the following assertions:
Suppose that v = G(u), then

(1) p is a parabolic point if and only if det (H(hv)(u)) = 0.
(2) p is a flat point if and only if rankH(hv)(u) = 0.

We now consider the relationship with the theories of Lagrangian singularities and graphlike
Legendrian unfoldings. By [12, Proposition 4.1], we have the following proposition.

Proposition 5.3. Let X : U →M be an embedding.
(1) The family of height functions H : U × Sn−1 → R of M = X(U) is a Morse family of

functions.
(2) The family of extended height functions H̃ : U × (Sn−1 × R) → R of M = X(U) is a

graphlike Morse family of hypersurfaces.

By the arguments in §4, we have a graphlike Legendrian unfolding whose generating family
is the height function of M = X(U). By Proposition 5.1, we have

C(H) = {(u,±n(u)) ∈ U × Sn−1 | u ∈ U }.
It follows that we have a graphlike Legendrian unfolding LH : C(H) → T ∗Sn−1 × R ∼=

J1(Sn−1,R) defined by

LH(u,±n(u)) = (L(H)(u,±n(u)), 〈±n(u),X(u)〉),
where L(H) : C(H) → T ∗Sn−1 is the corresponding Lagrangian immersion. By definition, we
have the following corollary of the above proposition:
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Corollary 5.4. Under the above notations, LH(C(H)) is a graphlike Legendrian unfolding such
that the height function H : U × Sn−1 → R of M = X(U) is a generating family of LH(C(H)).

By Corollary 5.4 and Proposition 5.1, we have the graphlike Legendrian unfolding LH(C(H))
whose graphlike wave front is the cylindrical pedal ±CPM of M = X(U). We call LH(C(H))
the Legendrian lift of the cylindrical pedal CPM of M = X(U). By definition, we have
H(u,±n(u)) = ±〈X(u),n(u)〉 = ±hπ(u). Therefore, we have the following proposition.

Proposition 5.5. The restriction of the height function H|C(H) is non-singular at u ∈ U if
and only if the pedal height function hπ is non-singular at u ∈ U.

It follows that the graphlike Legendrian unfolding LH(C(H)) is non-degenerate if and only if
the pedal height function hπ is non-singular.

6. Families of wave fronts induced by Gauss maps

In this section, we consider general geometric properties of singularities of the pedal foliation
of a hypersurface in Euclidean space. Let Fπ(M) be the pedal foliation on a hypersurface
M = X(U). Suppose that p = X(u0) ∈M is a non-singular point of the pedal height function hπ,
so that the germ of the pedal foliation (Fπ(M), p) is non-singular. We call the germ of the pedal
leaf Lπu0

(M) through p the central pedal leaf of the pedal foliation germ (Fπ(M), p). We consider
the family of pedal Gauss map germs {G|Lπu(M)}hπ(u)∈(R,hπ(u0)). Let π1 : Sn−1 × R → Sn−1

and π2 : Sn−1 × R → R be the canonical projections. Then G(Lπu(M)) = π1(π−12 (t) ∩ CPM )
for each t ∈ (R, hπ(u0)) is the small front of the non-degenerate graphlike Legendrian unfolding
LH(C(H)). Thus, the family of the image of pedal Gauss map germs {G|Lπu(M)}hπ(u)∈(R,hπ(u0))

is a family of wave fronts corresponding to the graphlike Legendrian unfolding LH(C(H)). We
can apply the theory of graphlike Legendrian unfoldings.

On the other hand, in order to understand the geometric meaning of singularities of Gauss
maps (or equivalently, cylindrical pedal), we review the theory of contact of submanifolds with
foliations [10, 13, 14]. Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2, gi :
(Xi, x̄i) → (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) → (R, 0) be submersion germs. For a
submersion germ f : (Rn, 0) → (R, 0), we denote that F(f) is the regular foliation defined by
f ; i.e., F(f) = {f−1(c) | c ∈ (R, 0)}. We say that the contact of X1 with the regular foliation
F(f1) at ȳ1 is the same type as the contact of X2 with the regular foliation F(f2) at ȳ2 if there
is a diffeomorphism germ Φ : (Rn, ȳ1) → (Rn, ȳ2) such that Φ(X1) = X2 and Φ(Y1(c)) = Y2(c)
for each c ∈ (R, 0), where Yi(c) = f−1i (c). In this case we write

K(X1,F(f1); ȳ1) = K(X2,F(f2); ȳ2).

We apply the method of Goryunov [10, Appendix] to the case forR+-equivalence among function
germs, so that we have the following:

Proposition 6.1. ([13]) Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 −
1, gi : (Xi, x̄i) → (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) → (R, 0) be submersion
germs. We assume that x̄i are singularities of function germs fi ◦ gi : (Xi, x̄i) → (R, 0). Then
K(X1,F(f1); ȳ1) = K(X2,F(f2); ȳ2) if and only if f1 ◦ g1 and f2 ◦ g2 are R+-equivalent.

We consider a function H : Rn × Sn−1 → R defined by H(x,v) = 〈x,v〉. For a hypersurface
X : U → Rn, we have H = H ◦ (X × 1Sn−1). We denote hv(x) = H(x,v) for v ∈ Sn−1. Suppose
that v0 = n(u0) and t0 = hπ(u0) = 〈X(u0),v0〉. By Proposition 5.1, h−1v0

(t0) is tangent to
M at p0 = X(u0). We denote the tangent hyperplane of M at p0 by TMp0 . Then h−1v0

(t) for
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t ∈ (t0 − ε, t0 + ε) is a hyperplane parallel to TMp0 . Therefore, we have a foliation PF(TMp0)
consists of the family of hyperplane parallel to TMp0 :

PF(TMp0) = {h−1v0
(t) | t ∈ (t0 − ε, t0 + ε)}.

We call PF(TMp0) the foliation of parallel tangent hyperplanes of M at p0
We now give a characterization of singularities of Gauss maps and cylindrical pedals. Let

Xi : (U i, ui) → (Rn, pi), (i = 1, 2) be hypersurface germs and Hi : (U i × Sn−1, (ui,vi)) → R
be families of height functions on M i = Xi(U i), where vi = Gi(ui), (i = 1, 2). Then we
have Lagrangian submanifold germs L(Hi)(C(Hi)) in T ∗Sn−1 which cover the Gauss maps Gi
as Lagrangian maps. We also have the graphlike Legendrian unfoldings LHi(C(Hi)) whose
graphlike wavefronts are the cylindrical pedals CPMi(U i).

Theorem 6.2. Suppose that the Lagrange submanifold germs L(Hi)(C(Hi)) are Lagrangian
stable. Then the following conditions are equivalent:

(1) L(H1)(C(H1)) and L(H2)(C(H2)) are Lagrangian equivalent,
(2) (CPM1(U1), (v1, t1)) and (CPM2(U2), (v2, t2)) are S.P+-K-diffeomorphic,
(3) LH1(C(H1)) and LH2(C(H2)) are S.P+-Legendrian equivalent,
(4) K(M1,PF(TM1

p1); p1) = K(M2,PF(TM2
p2); p2).

Proof. By Proposition 6.1, the conditions (4) is equivalent to the condition that the height
function germs h1v1 and h1v2 are R+-equivalent. By the assumption and Theorem 4.1, Hi is an
R+-versal unfolding of hivi as germs. Then the uniqueness theorem of the R+-versal unfoldings
(cf. [4, 18]) asserts that h1v1 and h1v2 are R+-equivalent if and only if H1 and H2 are P -R+-
equivalent. The last condition is equivalent to the condition (1) by Theorem 4.1. Since the
cylindrical pedal is the graphlike wave front of the graphlike Legendrian unfolding generated
by the family of height functions, the conditions (1) and (2) are equivalent by Theorem 4.4.
Moreover, by [14, Proposition 3.5], the conditions (2) and (3) are equivalent. This completes the
proof. 2

We remark that the condition (1) of the above theorem implies that the corresponding Gauss
maps G1 and G2 are A-equivalent. Here two map germs f, g : (Rn,0) → (Rp,0) are said to be
A-equivalent if there exist diffeomorphism germs φ : (Rn,0)→ (Rn,0) and ψ : (Rp,0)→ (Rp,0)
such that f ◦ φ = ψ ◦ g. Therefore, the singular sets of the Gauss maps (i.e., the parabolic
sets of M i) correspond to each other by the condition (1). In general, the A-equivalence of
the Gauss maps does not imply the Lagrangian equivalence of the corresponding Lagrangian
submanifolds. Moreover, the above theorem asserts that the pictures of the family of the images
of the pedal Gauss maps (the wave front propagations) are also corresponding. In the next
section we consider the detailed properties of the pedal foliations in the case for surfaces in R3.

7. Surfaces in Euclidean 3-space

In this section we consider surfaces in the Euclidean 3-space. Let X : U → R3 be an
embedding, where U ⊂ R2 is an open set. In §3 we introduced the notion of pedal foliations.
When hπ is constant? This the case that codimension of the pedal foliation is zero. We give a
classification of surfaces such that hπ is constant.

Proposition 7.1. Let X : U → R3 be an regular surface. Suppose that hπ is constant. Then
we have the following cases:

(1) M = X(U) is a subset of a plane,
(2) M = X(U) is a subset of a sphere around the origin,
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(3) M = X(U) is a subset of a circular cylinder around the origin CCY(r), where CCY(r) is
given by a rotation of the standard circular cylinder

SCCY(r) = {x = (x1, x2, x3) ∈ R3 | x21 + x22 = r2 }

around the origin, where r > 0,
(4)M = X(U) is a subset of a circular cone CCO(r, a), where CCO(r, a) is given by a rotation

of the standard circular cone

SCCO(r, a) = {x = (x1, x2, x3) ∈ R3 | x21 + x22 − r2(x3 − a)2 = 0, x3 > a }

around the origin, where r > 0,

Proof. Suppose that XT ≡ 0. Then 〈X⊥(u),G(u)〉 = 〈X(u),G(u)〉 = hπ(u) = r, so that
X⊥(u) = rG(u). Therefore, 〈X(u),X(u)〉 = r2. This means that M = X(U) is a subset of a
sphere around the origin with the radius |r|.

We consider the case XT 6≡ 0. Then we have two sets U1 = {u ∈ U |XT (u) 6= 0} and
U2 = {u ∈ U |XT (u) = 0}. It is clear that U1 is an open set and U1∪U2 = U. By the assumption,
U1 6= ∅. Moreover, by Corollary 3.3, U1 ⊂ K−1(0). If U2 = ∅, then M is a developable surface.
Suppose that U2 6= ∅. If U2 ∩ K−1(0) has an interior point v0 ∈ U , then there exists an open
neighbourhood V of v0 such that XT |V ≡ 0. By the previous argument, X(V ) is a part of a
sphere, so that K(v) 6= 0 on V. This is a contradiction, so that U2∩K−1(0) has no interior points.
Thus, we have ∂U1 = U2∩K−1(0). Moreover, if U \K−1(0) is non-empty, then U \K−1(0) ⊂ U2.
By the above arguments, we have IntU2 = U \ K−1(0). In this case X(IntU2) is a part of a
sphere and X(U1) is a developable surface. Therefore, we may suppose that U2 = ∅, so that M
is a developable surface.

It is classically known that developable surfaces is determined completely as follows [21]: A
developable surface is classified into one of the following cases:

(1) a part of a cylindrical surface,
(2) a part of a cone,
(3) a part of a tangent surface,
(4) the glue of the above three surfaces.
Suppose that M is a part of a cylindrical surface. It is parametrized at least locally by

X(s, u) = γ(s) + ue, where γ(s) is a unit speed space curve and e is a unit constant vector.
Moreover, we can choose that γ(s) is a planar curve such that t(s) ⊥ e, where t(s) = γ′(s) is
a unit tangent vector. In this case the unit normal of X(s, u) is given by n(s, u) = t(s) × e.
Therefore, we have hπ(s, u) = 〈γ(s) + ue, t(s)× e〉 = 〈γ(s), t(s)× e〉 = 〈γ(s)× t(s), e〉 = r. By
the Frenet-Serret formulae, we have 0 = (∂hπ/∂s)(s, u) = 〈γ(s)×κ(s)n(s), e〉, where n(s) is the
principal normal vector. Since γ is a planar curve and t(s) ⊥ e, we have γ(s) × κ(s)n(s) ≡ 0.
If κ ≡ 0 on some interval I, then γ is a line on I, so that X|I × R is a part of a plane.
If κ 6= 0 on some interval I, γ(s) and n(s) are parallel on I. There exists λ(s) such that
γ(s) = λ(s)n(s), so that ±λ(s) = 〈λ(s)e, e〉 = 〈λ(s)n× t(s), e〉 = 〈γ(s)× t(s), e〉 = r. It follows
that X(s, u) = rn(s) + ue. This means that X(s, u) is on a circular cylinder around the origin
for s ∈ I.

Suppose thatM is a part of a cone. It is parametrized at least locally byX(s, u) = a+uδ(s),
where δ(s) is a unit speed spherical curve and a is a constant vector. Then t(s) = δ′(s) is a unit
vector such that δ(s) and t(s) are orthogonal. In this case the unit normal of X(s, u) is given
by n(s, u) = δ(s) × t(s) = d(s). The moving frame {δ, t,d} is called a Sabban frame along the
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spherical curve δ [16]. We have the Frenet-Serret type formulae: δ′(s) = t(s),
t′(s) = κg(s)d(s)− δ(s),
d′(s) = −κg(s)t(s),

where κg(s) = 〈t′(s),d(s)〉 is the geodesic curvature of δ(s). By the assumption, we have
hπ(s, u) = 〈a,d(s)〉 = r and 0 = (∂hπ/∂s)(s, u) = 〈a,d′(s)〉 = 〈a,−κg(s)t(s)〉. If κg ≡ 0,
then δ is a geodesic in the unit sphere, so that it is a great circle. Moreover, d(s) is a constant
vector. This means that X(s, u) is in the plane 〈x,d〉 = r. If κg(s) 6= 0 on some interval I, then
〈a, t(s)〉 = 0 on I. Therefore t(s) is a planer curve, so that δ is a curve in the plane 〈x,a〉 = c.
If we consider a vector ã = (c/‖a‖2)a, then δ(s)− ã is orthogonal to a. Moreover, we have

〈δ(s)− ã, δ(s)− ã〉 = 〈δ(s), δ(s)〉 − 2〈δ(s), ã〉+ 〈ã, ã〉 = 1− c2

‖a‖2
.

This means that δ(s) is in the circle in the plane 〈x,a〉 = c. We have the case (4).
Finally, we suppose that M is a part of a tangent surface. It is parametrized at least locally

by X(s, u) = γ(s) + ut(s), where γ(s) is a unit speed curve with κ(s) 6= 0 and t(s) is the unit
tangent vector of γ. We denote the principal normal vector by n(s) and the binormal vector
by b(s) of γ. It is known that the unit normal vector of X(s, u) is the binormal vector b(s)
of γ. Therefore, we have hπ(s, u) = 〈γ(s) + ut(s), b(s)〉 = 〈γ(s), b(s)〉 = r. Thus, we have
∂hπ/∂s(s, u) = 〈t(s), b(s)〉 + 〈γ(s), t′(s)〉 = −τ(s)〈γ(s),n(s)〉 = 0, where τ(s) is the torsion of
γ. If τ ≡ 0, then γ is a planer curve, so that t(s) is also planer. Therefore X(s, u) is part of
a plane. If τ(s) 6= 0 on an interval I, then 〈γ(s),n(s)〉 = 0, so that there exist λ(s), µ(s) such
that γ(s) = λ(s)t(s) + µ(s)b(s). Since µ(s) = 〈γ(s), b(s)〉 = r, we have γ(s) = λ(s)t(s) + rb(s)
for s ∈ I. It follows that

t(s) = γ′(s) = λ′(s)t(s) + λ(s)t′(s) + rb′(s) = λ′(s)t(s) + κ(s)(λ(s)− r)n(s).

Therefore, we have λ′(s) = 1 and λ(s) = r. This is a contradiction. If κ(s) = 0 on an interval
J, then γ(s) is a line such that the direction is given by t(s). Then X(s, u) is a line on J × R,
which is singular. This completes the proof. 2

Since the leaf of the pedal foliation on a surface is a regular curve in generic, we consider
generic properties of regular curves on a surface. Let γ : I → U ⊂ R2 be a regular curve such
that γ = X ◦ γ is a unit speed curve. Then t(s) = γ′(s) is the unit tangent vector field. Let
nγ(s) is the unit normal vector field ofM = X(U) along γ.We define the relative normal vector
field of γ by e(s) = nγ(s)× t(s). Then we have the following Frenet-Serret type formulae:

t′(s) = κg(s)e(s) + κn(s)nγ(s),
e′(s) = −κg(s)t(s) + τg(s)nγ(s),
n′γ(s) = −κn(s)t(s)− τg(s)e(s),

where κn(s) is the normal curvature, κg(s) is the geodesic curvature and τg(s) is the geodesic
torsion. The frame {t(s), e(s),nγ(s)} is called the Darboux frame. It is known that

1) γ is an asymptotic curve of M if and only if κn = 0,
2) γ is a geodesic of M if and only if κg = 0,
3) γ is a principal curve of M if and only if τg = 0.

By the Frenet-Serret type formulae, G ◦ γ = nγ is singular at s if and only if κn(s) = τg(s) = 0.

Proposition 7.2. Let Lπu0
(M) be a non-singular pedal leaf through u0 ∈ U. Let γ : I → U be a

regular curve such that γ = X ◦γ is a parametrization of the pedal leaf Lπu0
(M) with γ(s0) = u0.

Then the following conditions are equivalent:



96 SHYUICHI IZUMIYA AND MASATOMO TAKAHASHI

(1) The pedal Gauss map G|Lπu0
(M) is singular at p = X(u0),

(2) κn(s0) = τg(s0) = 0,
(3) The tangent line TpLπu0

(M) gives the principal direction with the zero principal curvature.

Proof. Since G|Lπu0
(M) is parametrized by G ◦ γ = nγ , it has been already shown that the

conditions (1) and (2) are equivalent. The condition (2) means that t(s0) directs both the
asymptotic and the principal directions. Here, we have TpLπu0

(M) = 〈t(s0)〉R Therefore, the
conditions (2) and (3) are equivalent. 2

We now revisit the characterizations of the cusp point of the Gauss map in [2]. There are some
geometric characterization of the cusp point of the Gauss map. We add extra new conditions to
the characterizations of the cusp point of the Gauss map here.

Theorem 7.3. Suppose that the Gauss map G of M = X(U) is stable. Then the parabolic locus
K−1(0) is a regular curve and the following conditions are equivalent:

(1) p = X(u0) is a cusp of the Gauss map G,
(2) p = X(u0) is a swallowtail of the cylindrical pedal CPM ,
(3) The central pedal leaf Lπu0

(M) is tangent to the parabolic locus K−1(0). Moreover, for any
ε > 0, there exist u1 6= u2 ∈ U such that |u1 − u2| < ε, the tangent planes at u1, u2 are different
but hπ(u1) = hπ(u2) and the pedal leaf Lπu1

(M) = Lπu2
(M) is transverse to the parabolic locus

K−1(0),
(4) The family of the images of the pedal Gauss maps {G|Lπu(M)}hπ(u)=t∈(R,t0) is the swal-

lowtail bifurcation on S2.

Proof. In the previous contexts (cf. [12]), it has been already known that the conditions (1) and
(2) are equivalent. Since the cylindrical pedal CPM is a graphlike wave front and the family of
images of Pedal Gauss maps is the family of corresponding small fronts, so the conditions (2) and
(4) are equivalent by using the classification of non-degenerate graphlike Legendrian unfoldings
in [11, Theorem 2.3]. By Proposition 7.2, the tangent line TpLπu0

(M) gives the principal direction
with the vanishing principal curvature. There is a characterization of the cusp point of the Gauss
map in [3] that the principal direction with the vanishing principal curvature is tangent to the
parabolic point at the point and transverse at the other points. This means that the conditions
(1) and (3) are equivalent. 2
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