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BRIANÇON-SPEDER EXAMPLES AND THE FAILURE OF WEAK

WHITNEY REGULARITY

KARIM BEKKA AND DAVID TROTMAN

1. Introduction

In [3, 5] we introduced a weakened form of Whitney’s condition (b), motivated by the work
of M. Ferrarotti on metric properties of Whitney stratified sets [11, 12]. The resulting weakly
Whitney stratified sets retain many properties of Whitney stratified sets, in particular they are
locally topologically trivial along strata [26, 16], because they are Bekka (c)-regular (see section
5) and so they have the structure of abstract stratified sets [3, 4], and thus are triangulable [14].
Weakly Whitney stratified sets also have many metric properties known to hold for Whitney
stratified sets [7]. Orro and Trotman [20], Parusiński [23], Pflaum [24], and Schürmann [25] have
described and developed further useful properties of weakly Whitney stratified sets.

There are real algebraic varieties with weakly Whitney regular stratifications which are not
Whitney regular, and we give such an example in section 3 below. No examples are known
among complex analytic varieties however, so that the natural question arises : do Whitney
regularity and weak Whitney regularity coincide in the complex case? As a test, in this paper
we study the weak Whitney regularity of the well-known Briançon-Speder examples, consisting
of Milnor number constant families of complex surface singularities in C3 which are not Whitney
regular [9], although they are (c)-regular because they are weighted homogeneous with constant
weights.

We investigate systematically all of these (infinitely many) Briançon-Speder examples, and
establish in particular that none of the examples are weakly Whitney regular. We determine all
the complex curves along which Whitney (b)-regularity fails and all the complex curves along
which weak Whitney regularity fails. It turns out that for each example there are a finite number
of curves γi with the property that weak Whitney regularity fails along every curve tangent to
one of the γi at the origin, while weak Whitney regularity holds along all other curves. For
example, the classical Briançon-Speder example

ft(x, y, z) = x5 + txy6 + y7z + z15

for which µ(ft) = 364, has 16 such curves γ1, . . . , γ16, where each γi(s) is of the form

(s8, as5, 4a−7s5,−5a−6s2) ∈ C4,

with a16 = −8 (hence the 16 distinct complex solutions).
It should be of interest to interpret these curves in the light of other studies of the metric

geometry of singular complex surfaces, for example the recent work of Birbrair, Neumann and
Pichon characterising their inner bilipschitz geometry [8], and the work of Neumann and Pichon
characterising outer bilipschitz triviality [19], or the work of Garcia Barroso and Teissier on the
local concentrations of curvature [13].

Further evidence that weak Whitney regularity and Whitney regularity might be equivalent
for complex analytic stratifications, at least for complex analytic hypersurfaces, comes from a
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recent result of the second author with Duco van Straten [29] that equimultiplicity of a family
of complex analytic hypersurfaces follows from weak Whitney regularity.

The second author acknowledges the support of the University of Rennes 1 during several
visits to Rennes, when much of the work in this paper was done.

2. Definitions.

We start by recalling the Whitney conditions.
Let X,Y be two submanifolds of a riemannian manifold M and take y ∈ X ∩ Y .

Condition (a): The triple (X,Y, y) satisfies Whitney’s condition (a) if for each sequence of
points {xi} of X converging to y ∈ Y such that TxiX converges to τ (in the corresponding
grassmannian in TM), then TyY ⊂ τ .
Condition (b): The triple (X,Y, y) satisfies Whitney’s condition (b) if for each local diffeomor-
phism h : Rn →M onto a neighbourhood U of y in M and for each sequence of points {(xi, yi)} of
h−1(X)×h−1(Y ) converging to (h−1(y), h−1(y)), such that the sequence {Txih−1(X)} converges
to τ in the corresponding grassmannian and the sequence {xiyi} converges to ` in Pn−1(R), then
` ⊂ τ .
Condition (bπ): The triple (X,Y, y) satisfies Whitney’s condition (bπ) if for each local diffeo-
morphism h : Rn → M onto a neighbourhood U of y in M and for each sequence of points
{xi} of h−1(X) converging to h−1(y), such that the sequence {Txih−1(X)} converges to τ in the

corresponding grassmannian and the sequence {xiπ(xi)} converges to ` in Pn−1(R), then ` ⊂ τ .
One says that (X,Y ) satisfies condition (a) (resp.(b), (bπ)) if (X,Y, y) satisfies (a) (resp. (b),

(bπ)) at each y ∈ X ∩ Y .

Remark 2.1. It is an easy exercise to check that condition (b) implies condition (a) [16]. Also
(b) is equivalent to both (a) and (bπ) holding [18].

We now introduce a regularity condition (δ), obtained by weakening condition (b).
Given a euclidean vector space V , and two vectors v1, v2 ∈ V ∗ = V − {0}, define the sine of

the angle θ(v1, v2) between them by :

sin θ(v1, v2) =
||v1 ∧ v2||
||v1||.||v2||

where v1 ∧ v2 is the usual vector product and ||.|| is the norm on V induced by the euclidean
structure. Given two vector subspaces S and T of V we define the sine of the angle between S
and T by :

sin θ(S, T ) = sup{sin θ(s, T ) : s ∈ S∗}
where

sin θ(s, T ) = inf{sin θ(s, t) : t ∈ T ∗}.
If πT : V −→ T⊥ is the orthogonal projection onto the orthogonal complement of T , then

sin θ(s, T ) =
||πT (s)||
||s||

.

The definition for lines is similar to that for vectors - take unit vectors on the lines.
One verifies easily that :

sin θ(v1, v3) ≤ sin θ(v1, v2) + sin θ(v2, v3)

for all v1, v2, v3 ∈ V ∗, and

sin θ(S1 + S2, T ) ≤ sin θ(S1, T ) + sin θ(S2, T ),

for subspaces S1, S2, T of V such that S1 is orthogonal to S2.
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Condition (δ): We say that the triple (X,Y, y) satisfies condition (δ) if there exists a local
diffeomorphism h : Rn −→ M to a neighbourhood U of y in M , and there exists a real number
δy, 0 ≤ δy < 1, such that for every sequence {xi, yi} of h−1(X) × h−1(Y ) which converges
to (h−1(y), h−1(y)) such that the sequence xiyi converges to l in Pn−1(R), and the sequence
Txih

−1(X) converges to τ , then sin θ(l, τ) ≤ δy.

Remark 2.2. Clearly condition (b) implies (δ) : just take δy = 0.

Definition 2.3. A weakly Whitney stratification of a subspace A of a manifold M is a locally
finite partition of A into connected submanifolds, called the strata, such that :

(1). Frontier Condition : If X and Y are distinct strata such that X ∩ Y 6= ∅, that is X and
Y are adjacent, then Y ⊂ X.

(2). Each pair of adjacent strata satisfies condition (a).
(3). Each pair of adjacent strata satisfies condition (δ).

Examples. (1). Every Whitney stratification is weakly Whitney regular.
(2). Let X be the open logarithmic spiral with polar equation,

{(r, θ) ∈ R2 | r = e
t

tan(β) , θ = t(mod 2π)} where 0 < β <
π

2
}

and let Y = {0} ⊂ R2. Condition (a) is trivially satisfied for (X,Y, {0}), and condition (δ) is
also satisfied, but condition (b) fails because the angle θ(x0, TxX) = β is constant and nonzero
for all x in X. So this is a weakly Whitney regular stratification which is not Whitney regular.

(3). If X is the open spiral with polar equation

{(r, t) ∈ R2 | r = e−
√
t, t ≥ 0}

and Y = {0} ⊂ R2, then the stratified space X ∪ Y is not weakly Whitney.

Remark 2.4. In the definition of weakly Whitney stratification, we could further weaken condition
(δ) as follows : If π is a local C1 retraction associated to a C1 tubular neighbourhood of Y near
y, a condition (δπ) is obtained from the definition of (δ) by replacing the sequence {yi} by the
sequence {π(xi)}. Clearly (bπ implies (δπ). Recall that (b) ⇐⇒ (bπ) + (a) [18], as noted above
in Remark 2.1.

Lemma 2.5. (δ) + (a)⇐⇒ (δπ) + (a).

Proof. Clearly (δ) =⇒ (δπ), so it suffices to show that (δπ) + (a) =⇒ (δ). In the definition of
(δ) decompose the limiting vector l as the sum of a vector l1 tangent to Y at y, and a vector l2
tangent to π−1(y) at y. Then

sin θ(l, τ) = sin θ(l1 + l2, τ) ≤ sin θ(l1, τ) + sin θ(l2, τ).

By condition (a), sin θ(l1, τ) = 0, hence sin θ(l, τ) ≤ sin θ(l2, τ), which is less than or equal to δy
by hypothesis, implying (δ). �

Using Lemma 2.5 will make checking weak Whitney regularity easier.

3. Real algebraic examples.

Because many of the important applications of Whitney stratifications arise in real algebraic
geometry and real singularity theory, it is necessary to know how weak Whitney regularity
compares with Whitney regularity for semi-algebraic or real algebraic stratifications, as well as
for complex algebraic/analytic stratifications. The following simple example illustrates that weak
Whitney regularity is strictly weaker than Whitney regularity for real algebraic stratifications.
No such example is currently known in the case of complex algebraic stratifications, and this
will be the motivation for the calculations in sections 7, 8 and 9 of this paper.
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Example 3.1. Let V = {(x, y, t) ∈ R3 | y6 = t6x2 + x6}, let Y denote the t-axis, and let
X = V \ Y . One can check that the triple (X,Y, (0, 0, 0)) satisfies conditions (a) and (δ), but
not condition (b). See [6] for details.

The following example illustrates the independence of the conditions (a) and (δ) in the case
of real algebraic stratifications.

Example 3.2. Let V = {(x, y, t) ∈ R3 | y20 = t4x6 + x10}, let Y denote the t-axis and let
X = V \ Y . Then the triple (X,Y, (0, 0, 0)) satisfies condition (δ), but not condition (a). For
details see [6].

4. Some properties of weakly Whitney stratified spaces.

Like Whitney stratified spaces, weakly Whitney stratified spaces are filtered by dimension.

Proposition 4.1. Suppose that a triple (X,Y, y), y ∈ Y ∩X, satisfies conditions (a) and (δ).
Then dimY < dimX.

Definition 4.2. If (A,Σ), (B,Σ′) are weakly Whitney stratified spaces in M , then (A,Σ) and
(B,Σ′) are said to be in general position if for each pair of strata X ∈ Σ and X ′ ∈ Σ′, X and
X ′ are in general position in M , i.e. the natural map :

TxM −→ TxM/TxX ⊕ TxM/TxX
′

is surjective for all x ∈ X ∩X ′.

Proposition 4.3. Let V be a submanifold of M in general position with respect to (A,Σ). Then
(A ∩ V,Σ ∩ V ) is weakly Whitney regular, if (A,Σ) is weakly Whitney regular.

A proof is given in [6]. A stronger statement, in the case of two stratified sets transverse to
each other, is given in [22].

If A is locally closed and (A,Σ) is weakly Whitney (without assuming the frontier condition)
then the stratified space (A,Σc), whose strata are the connected components of the strata of Σ,
automatically satisfies the frontier condition. See [3, 4] for the (c)-regular case, which includes
the case of weakly Whitney stratifications, as remarked below.

Proposition 4.4. Let f : M →M ′ be a C1 map, and let (A,Σ) be a weakly Whitney stratified
space in M ′. If f is transverse to each stratum X ∈ Σ, then the pull-back (f−1(A), f−1(Σ)) is
weakly Whitney stratified.

See [6] for proofs.

5. (c)-regularity of weakly Whitney stratifications.

In this section we recall the fact that weakly Whitney stratified spaces are (c)-regular. It
follows [3, 4] that they can be given the structure of abstract stratified sets in the sense of Thom-
Mather [16], implying in particular local topological triviality along strata and triangulability
[14].

Let (U, φ) be a C1 chart at y for a submanifold Y ⊆M where dimY = d,

φ : (U,U ∩ Y, y) −→ (Rn,Rd × {0}n−d, 0).

Then φ defines a tubular neighbourhood Tφ of U ∩ Y in U , induced by the standard tubular
neighbourhood of Rd × {0}n−d in Rn :

- with retraction πφ = φ−1 ◦ πd ◦ φ where πd : Rn → Rd is the canonical projection,
- and distance function ρφ = ρ ◦ φ : U → R+ where ρ : Rn → R+ is the function defined by

ρ(x1, · · · , xn) = Σni=d+1x
2
i .
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It is well-known (see [16, 27, 28]) that if a pair (X,Y ) of submanifolds of M satisfies Whitney’s
condition (b) then for any sufficiently small tubular neighbourhood TY of Y in M , the map

(πY , ρY )|X∩TY : X ∩ TY −→ Y × R
is a submersion. In fact this property characterises (b)-regularity [27]. For comparison, when
the pair (X,Y ) is weakly Whitney, there exists some tubular neighbourhood TY such that the
map

(πY , ρY )|X∩TY : X ∩ TY −→ Y × R
is a submersion.

Proposition 5.1. Let X,Y be two submanifolds of M , such that Y ⊂ X and let y ∈ Y . If the
triple (X,Y, y) satisfies the weak Whitney conditions, then there exists a C1 chart (U, φ) at y for
Y in M and a neighbourhood U ′ of y, U ′ ⊂ U , such that (πφ, ρφ)|U ′∩X is a submersion.

Corollary 5.2. Let X,Y be two submanifolds of M such that Y ⊂ X and the pair (X,Y )
satisfies the conditions (a) and (δ). Then there exists a tubular neighbourhood TY of Y in M
such that (πY , ρY )|X : X ∩ TY −→ Y × R is a submersion.

Proposition 5.3. Every weakly Whitney stratified space is (c)-regular, and hence is locally
topologically trivial along strata.

For the proofs see [6]. We note that, when weak Whitney regularity holds, the control function
in the definition of (c)-regularity can be chosen to be a standard distance function arising from a
tubular neighbourhood. This means that weak Whitney regularity is a much stronger condition
than mere (c)-regularity, for which the control function may be weighted homogeneous or even
infinitely flat along Y .

6. Complex stratifications.

In Example 3.1 we saw an example of a weakly Whitney regular real algebraic stratification
in R3 which is not Whitney (b)-regular. We are now interested in comparing weak Whitney reg-
ularity and Whitney regularity of complex analytic or complex algebraic stratifications, the main
question being whether the extra ‘rigidity’ of complex analytic varieties prevents the existence
of weakly Whitney complex analytic stratifications which are not Whitney regular.

Let F be an analytic function germ from Cn × C to C, defined in a neighbourhood of 0,

F : Cn × C, 0 −→ C, 0
(x, t) 7−→ F (x, t)

where F (0, t) = 0. We denote by π the projection on the second factor, and let V = F−1(0),
Y = {0}n × C and Vt = {x ∈ Cn | F (x, t) = 0}. We assume that each Vt has an isolated
singularity at (0, t), the critical set of the restriction of π to V is Y, and X = V \Y is an analytic
complex manifold of dimension n.
For each point (x, t) ∈ X we have

T(x,t)X =

{
(u, v) ∈ Cn × C

∣∣∣∣∣
n∑
i=1

ui
∂F

∂xi
(x, t) + v

∂F

∂t
(x, t) = 0

}
=
(
CgradF

)⊥
.

Let gradF = ( ∂F∂x1
, . . . , ∂F∂xn ,

∂F
∂t ), gradxF = ( ∂F∂x1

, . . . , ∂F∂xn ) and

‖gradxF‖2 =

n∑
i=1

‖ ∂F
∂xi
‖2.

The following characterisations of conditions (a), (bπ) and (δπ) are straightforward.
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Whitney’s condition (a)

The pair (X,Y ) satisfies Whitney’s condition (a) at 0 if and only if

lim
(x,t)→0
(x,t)∈X

(
∂F
∂t (x, t)

‖gradxF (x, t)‖

)
= 0.

Whitney’s condition (bπ)

The couple (X,Y ) satisfies Whitney’s condition (bπ) at 0 if and only if

lim
(x,t)→0
(x,t)∈X

( ∑n
i=1 xi

∂F
∂xi

(x, t)

‖x‖‖gradxF (x, t)‖

)
= 0.

Condition (δπ)

The pair (X,Y ) satisfies the (δπ) condition at 0 if and only if there exists a real number
0 ≤ δ < 1 such that

lim
(x,t)→0
(x,t)∈X

( ∑n
i=1 xi

∂F
∂xi

(x, t)

‖x‖‖gradxF (x, t)‖

)
≤ δ.

Recall that Whitney’s condition (b) implies (a) + (δπ).
Question. Is the converse true in the complex hypersurface case, i.e. does (a) + (δπ) imply (b)
or, equivalently, does (a) + (δπ) imply (bπ) ?

Remark 6.1. Because weak Whitney regularity implies local topological triviality along strata,
if we wish to decide whether weak Whitney regularity and Whitney regularity are equivalent for
complex hypersurfaces, we can restrict to studying families of isolated singularities of complex
hypersurfaces with constant Milnor number (Milnor number is a topological invariants). But we
know by the fundamental result of Lê Dung Tràng and K. Saito [15] that a family of complex
hypersurfaces with isolated singularities has constant Milnor number if and only if

lim
(x,t)→0

(
∂F
∂t (x, t)

‖gradxF (x, t)‖

)
= 0,

which implies condition (a).

The following lemma due to Briançon and Speder [10] gives an equivalent condition to (bπ)
when (a) is satisfied.

Let γ : ([0, 1], 0) → (Cn × C, 0), be a germ of an analytic arc and ν the valuation along γ in
the local ring On+1,0.

Notation. Let ν(x) := inf{ν(xi)|1 ≤ i ≤ n} and ν(Jx(F )) := inf{ν( ∂F∂xi |1 ≤ i ≤ n}.

Lemma 6.2. The following statements are equivalent:
(i) the pair (X,Y ) satisfies (bπ) at 0,
(ii)

lim
(x,t)→0
(x,t)∈X

(
t∂F∂t (x, t)

‖x‖‖gradxF (x, t)‖

)
= 0.

In other words, the following statements are equivalent:
(i) ν(

∑n
i=1 xi

∂F
∂xi

) > ν(x) + ν(Jx(F ))

(ii) ν(t) + ν(∂F∂t ) > ν(x) + ν(Jx(F ))
where ν is the valuation along germs of analytic arcs γ : [0, 1]→ X.
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Proof. For s ∈ [0, 1], γ(s) = (x1(s), . . . , xn(s), t(s)).
Since F ◦ γ ≡ 0, we have

n∑
i=1

x′i(s)
∂F ◦ γ
∂xi

(s) = −t′(s)∂F ◦ γ
∂t

(s). (∗)

If a = ν(x) and b = ν(Jx(F )), there exist two non zero vectors of Cn, A and B, such that

(x1(s), . . . , xn(s)) = Asa + . . .

and (
∂F ◦ γ
∂x1

(s), . . . ,
∂F ◦ γ
∂xn

(s)

)
= Bsb + . . . .

We suppose (i) holds. Then since

n∑
i=1

xi(s)
∂F ◦ γ
∂xi

(s) = 〈A,B〉sa+b + . . . ,

we must have 〈A,B〉 = 0.
From (*) we have

t′(s)
∂F ◦ γ
∂t

(s) = −
n∑
i=1

x′i(s)
∂F ◦ γ
∂xi

(s) = −a〈A,B〉sa+b−1 + . . . .

Then

ν(t) + ν(
∂F

∂t
) = ν(t′(s)

∂F ◦ γ
∂t

) + 1 > (a+ b− 1) + 1 = a+ b.

We suppose now that (ii) holds. Then since

t′(s)
∂F ◦ γ
∂t

= −a〈A,B〉sa+b−1 + . . . ,

we must have again 〈A,B〉 = 0, which is exactly condition (i). �

7. The Briançon and Speder example with µ = 364.

In this section we study the original example, due to Briançon and Speder [9], of a topologically
trivial family of isolated complex hypersurface singularities which is not Whitney regular. The
examples of Briançon and Speder given in [9] were the only such examples known, until very
recently.

Initially we shall carry out explicit calculations for the most well-known example of Briançon
and Speder, analysed in their celebrated note of January 1975 :

F (x, y, z, t) = Ft(x, y, z) = x5 + txy6 + y7z + z15

for which µ(Ft) = 364 for all t near 0.

Theorem 7.1. The Briançon and Speder example F (x, y, z, t) = x5 + txy6 + y7z + z15 is not
weakly Whitney regular.

Proof. Let F (x, y, z, t) = x5 + txy6 +y7z+ z15. Then F is a quasihomogenous µ-constant family
of type (3, 2, 1; 15). Thus the stratification (F−1(0) \ (0t), (0t)) is (a)-regular by Remark 6.1

We shall construct an explicit analytic path γ(s) = (x(s), y(s), z(s), t(s)) contained in F−1(0)
such that

∆(x, y, z, t) =

( ∑n
i=1 xi

∂F
∂xi

(x, y, z, t)

‖x‖‖gradxF (x, y, z, t)‖

)
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tends to 1 when (x, y, z, t) tends to 0 along γ(s). This means that condition (δπ) is not satisfied
at 0, by the characterisation given in section 6. By Lemma 2.4 it then follows using (a)-regularity
that (δ) is not satisfied at 0, so that weak Whitney regularity fails.

Following [9] and [27] we take

x(s) = s8

y(s) = as5

z(s) =
4

a7
λs5

t(s) = − 5

a6
s2

with a 6= 0.
For γ(s) to lie on F−1(0) we must have that

F (γ(s)) = (1− 5

a6
a6 + 4λ+ (

4

a7
)15λ15s35)s40 ≡ 0,

so that

G(λ, s) = −4 + 4λ+ (
4

a7
)15λ15s35 ≡ 0.

ince ∂G
∂λ (λ, 0) = 4 6= 0, it follows by the implicit function theorem that λ is a function of s for s

near 0.
Note that λ(0) = 1.
Then we have along γ(s) near s = 0,

∂F

∂x
= 5x4 + ty6 = 5s32 − 5

a6
a6s32 = 0,

∂F

∂y
= 6txy5 + 7y6z =

(
−30

a
+

28

a
λ

)
s35,

∂F

∂z
= y7 + 15z14 = a7s35 + 15(

4

a7
)14λ14s70 ∼ a7s35.

Because λ(0) = 1, the limit of the orthogonal secant vectors

(x, y, z)

‖(x, y, z)‖
is

(0 : a :
4

a7
) = (0 : a8 : 4),

and the limit of the normal vectors

gradxF (x, y, z, t)

‖gradxF (x, y, z, t)‖
is

(0 :
−2

a
: a7) = (0 : −2 : a8).

Then ∆(γ(s)) tends to 1 if and only if (0 : a8 : 4) = (0 : −2 : a8), i.e.

a8

4
=
−2

a8
⇐⇒ a16 = −8.

It follows that (δπ) is not satisfied along γ if and only if a16 = −8. Choosing a to be one of these
16 complex numbers, we have the desired conclusion, i.e. that (δπ) fails. It follows as above that
weak Whitney regularity fails, proving the theorem. �
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Note that in the proof above we cannot exclude the possibility that there are other curves on
which (δπ) fails. To clarify the situation, in the next section we make a systematic study of all
curves γ(s) on F−1(0) and passing through the origin.

A similar calculation as in the theorem above for the simpler µ-constant family

F (x, y, z, t) = x3 + txy3 + y4z + z9,

for which µ = 56 (also due to Briançon and Speder [9]), shows that (δπ) fails for this example too.
Our systematic study to determine all curves on which (δπ) fails for this simpler example will be
extended to a more general study, given in section 9 below, of an infinite family of examples, of
which x3 + txy3 + y4z+ z9 is the first, again defined by Briançon and Speder in their celebrated
1975 note [9].

In what follows we determine the initial terms of all curves along which condition (δ) fails, or
equivalently along which (δπ) fails, by Lemma 2.5.

8. Failure of weak Whitney regularity: a complete analysis.

Take again

F (x, y, z, t) = x5 + txy6 + y7z + z15.

Let γ : ([0, 1], 0) → (F−1(0), 0) ⊂ (Cn × C, 0) be a germ of an analytic arc and let ν be the
valuation along γ.

Let X = (x, y, z) and

JXF = (
∂F

∂x
,
∂F

∂y
,
∂F

∂z
).

We will use the notations

ν(X) := inf{ν(x), ν(y), ν(z)},

and

ν(JX(F )) := inf{ν(
∂F

∂x
), ν(

∂F

∂y
), ν(

∂F

∂z
)}.

We begin by determining the curves along which condition (bπ) holds (because (a)-regularity
holds, by Remark 6.1, we know that (bπ) is equivalent to (b), by Remark 2.1).

By Lemma 6.2, the µ-constant property and the Lê-Saito theorem (see Remark 6.1), if
ν(t) ≥ ν(X) then

ν(t) + ν(
∂F

∂t
) ≥ ν(X) + ν(

∂F

∂t
)

> ν(X) + ν(JX(F ))),

so that (bπ) holds by Lemma 6.2, and hence Whitney’s condition (b) holds also.
We can therefore suppose from now on that ν(t) < ν(X).
If

ν(
∂F

∂x
) = inf{4ν(x), ν(t) + 6ν(y)} (1)

we have:
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(1). when 4ν(x) ≥ ν(t) + 6ν(y), so that ν(x) > ν(y), then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + 6ν(y)

> ν(y) + ν(t) + 6ν(y)

= ν(y) + ν(
∂F

∂x
) (by (1))

≥ ν(X) + ν(JX(F )),

When however

ν(
∂F

∂x
) > inf{4ν(x), ν(t) + 6ν(y)} (2)

then we must have

4ν(x) = ν(t) + 6ν(y). (3)

Because F ◦ γ ≡ 0, we have that

x5 + txy6 = −y7z − z15. (4)

On the other hand

x5 + ty6x = −4x5 + x
∂F

∂x
and (2) imply that

ν(x5 + ty6x) = 5ν(x).

Hence, by (4),

5ν(x) ≥ inf{7ν(y) + ν(z), 15ν(z)}
and, unless ν(y) = 2ν(z), it follows that

5ν(x) = inf{7ν(y) + ν(z), 15ν(z)}. (5)

(i) If ν(y) > 2ν(z), it follows that ν(x) = 3ν(z). Then, by (1) and using that

∂F

∂z
= y7 + 15z14 (6)

it follows that

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + 6ν(y)

> ν(t) + 15ν(z)

> 15ν(z)

= ν(z) + ν(
∂F

∂z
)

≥ ν(X) + ν(JX(F )),

and hence (bπ) holds.

(ii) If ν(y) = 2ν(z),

(a) and ν(x) = 3ν(z), then from (3) we obtain

12ν(z) = ν(t) + 12ν(z),

i.e. ν(t) = 0, which is impossible;
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(b) and ν(x) > 3ν(z), then

ν(y7 + z14) > 14ν(z)

and from (6) it follows that

ν(
∂F

∂z
) = 14ν(z)

so that

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + 6ν(y)

> ν(t) + 15ν(z)

> 15ν(z)

= ν(z) + ν(
∂F

∂z
)

≥ ν(X) + ν(JX(F )),

so that (bπ) holds, using Lemma 6.2 again.

(iii) If ν(y) < 2ν(z), we have from Equation (5) that

5ν(x) = 7ν(y) + ν(z). (7)

Subtracting (2) from (7) gives

ν(x) + ν(t) = ν(y) + ν(z). (8)

We can suppose now that

ν(x) + ν(t) = ν(y) + ν(z)

and

ν(y) < 2ν(z).

We carry on with the last cases:

(I) If ν(z) > ν(y) we have

ν(z14) > ν(y7),

so that

ν(
∂F

∂z
) = 7ν(y). (9)

Then (1), (8) and (9) give

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + 6ν(y)

= ν(z) + 7ν(y)

> ν(y) + 7ν(y)

= ν(y) + ν(
∂F

∂z
)

≥ ν(X) + ν(JX(F )),

and we have that (bπ) holds, by Lemma 6.2.
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(II) If 2ν(z) > ν(y) > ν(z), then

ν(
∂F

∂z
) = 7ν(y) > 6ν(y) + ν(z),

so that
∂F

∂y
= 6txy6 + 7y7z = 6txy6 − 7(x5 + txy6 + z15)

or
∂F

∂y
= −7x5 − txy6 − 7z15. (10)

Now because 2ν(z) > ν(y) we have that

15ν(z) > ν(z) + 7ν(y),

= ν(x) + ν(t) + 6ν(y) (by (8))

= ν(txy6). (11)

Also by (2)

ν(
∂F

∂x
) > 4ν(x).

This means that

ν(5x4 + ty6) > 4ν(x)

which implies in turn that

ν(−7x5 − txy6) = ν(txy6). (12)

It follows from (10), (11) and (12) that

ν(y
∂F

∂y
) = ν(txy6),

i.e.

ν(
∂F

∂y
) = ν(txy5). (13)

Then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + 6ν(y)

= ν(txy5) + ν(y)

> ν(txy5) + ν(z)

= ν(
∂F

∂y
) + ν(z) (by (13))

≥ ν(X) + ν(JX(F )),

and again (bπ) holds, by Lemma 6.2

Résumé: a germ of arc (x(s), y(s), z(s), t(s)) along which Whitney condition (b) is
not satisfied must fulfil the following conditions:

• ν(x) > ν(y) = ν(z) > ν(t)
• ν(x) + ν(t) = ν(z) + ν(y)
• 4ν(x) = ν(t) + 6ν(y).
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Resolving these equations we find that

5ν(x) = 8ν(y) and 5ν(t) = 2ν(y),

so that the set of germs of analytic arcs along which Whitney condition (b) is not satisfied is
contained in the set

A := { γ(s) = (x(s), y(s), z(s), t(s)) : [0, 1]→ Cn × C |
x(s) = a1s

α1 + · · ·
y(s) = a2s

α2 + · · ·
z(s) = a3s

α3 + · · ·
t(s) = a4s

α4 + · · ·

with 5α1 = 8α, α2 = α3 = α, 5α4 = 2α, α ≡ 0[5], and ai ∈ C∗satisfying some conditions }
It remains to characterize the subset of arcs along which the (δ) condition is not satisfied, or

equivalently along which the (δπ) condition is not satisfied, using (a)-regularity and Lemma 2.5.
Let γ ∈ A. We may suppose a1 = 1, and write a2 = a, a3 = b and a4 = c.Then

F ◦ γ(s) = (s8α + ...) + (c.a6s8α + . . .) + (a7bs8α + . . .) + (b15s15α + . . .) ≡ 0

so that
s8α(1 + c.a6 + a7.b+ s(. . .+ b15s7α−1 + . . .)) ≡ 0,

and we must have

1 + c.a6 + a7.b = 0.

Thus along γ(s) near s = 0 we have,

∂F

∂x
= 5x4 + ty6 = s

32
5 α(5 + ca6) + . . .

∂F

∂y
= 6txy5 + 7y6z = a5(6c+ 7ab)s7α + . . .

∂F

∂z
= y7 + 15z14 = a7s7α + . . .+ 14b14s14α + . . . .

But now, using (2), ν(∂F∂x ) > 32
5 α imposes the condition 5 + ca6 = 0. It follows that

c = − 5

a6
, b =

4

a7

and

a5(6c+ 7ab) = −2

a
.

The limit of orthogonal secant vectors

(x, y, z)

‖(x, y, z)‖
is

(0 : a : b) = (0 : a8 : 4),

and the limit of normal vectors
gradxF (x, y, z, t)

‖gradxF (x, y, z, t)‖
is

(0 : a5(6c+ 7ab) : a7) = (0 : −2

a
: a7) = (0 : −2 : a8).
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As at the end of section 7 we deduce that (δπ) is not satisfied along γ if and only if

(0 : a8 : 4) = (0 : −2 : a8),

or equivalently when a16 = −8. Choosing a to be one of these 16 complex numbers, we have the
desired conclusion, namely that (δπ) fails precisely on those curves

γ(s) = (x(s), y(s), z(s), t(s))

whose initial terms are

(s8, as5, 4a−7s5,−5a−6s2).

By Lemma 2.5 and (a)-regularity, these are precisely the curves on which (δ) fails, that is to
say we have identified all of the curves on which weak Whitney regularity fails to hold.

9. Other Briançon and Speder examples

We perform similar calculations for the infinite family of examples, also due to Briançon and
Speder [9] :

F (x, y, z, t) = x3 + txyα + yβz + z3α,

where α ≥ 3 and 3α = 2β + 1.
The functions ft(x, y, z) = Ft(x, y, z) are quasihomogenous of type (α, 2, 1; 3α) with isolated
singularity at the origin, for each t, and so each

µt = (3α− 1)(3α− 2) = 2β(2β − 1),

by the Milnor-Orlik formula [17]. Thus ft is a µ-constant family.
We are again hunting for analytic arc germs where condition (δ) fails.
Clearly

∂F

∂x
= 3x2 + tyα

∂F

∂y
= αtxyα−1 + βyβ−1z

∂F

∂z
= yβ + 3αz3α−1 = yβ + 3αz2β .

Let γ : ([0, 1], 0)→ (F−1(0), 0) ⊂ (Cn×C, 0), be a germ of an analytic arc and ν the valuation
along γ.

As above we let X = (x, y, z) and JXF = (∂F∂x ,
∂F
∂y ,

∂F
∂z ), then write

ν(X) := inf{ν(x), ν(y), ν(z)}

and

ν(JX(F )) := inf{ν(
∂F

∂x
), ν(

∂F

∂y
), ν(

∂F

∂z
)}.

We begin by determining along which curves condition (bπ) holds. Note that again Remark
2.1 implies that for the examples studied here (bπ) is equivalent to Whitney’s condition (b),
because Whitney’s condition (a) holds by the Lê -Saito theorem (Remark 6.1).

Suppose that ν(t) ≥ ν(X). Again by the µ-constant condition and Remark 6.1,

ν(t) + ν(
∂F

∂t
) > ν(t) + ν(

∂F

∂x
)

so that, since ν(t) ≥ ν(X),

ν(t) + ν(
∂F

∂t
) > ν(X) + ν(

∂F

∂x
),



102 KARIM BEKKA AND DAVID TROTMAN

so that

ν(t) + ν(
∂F

∂t
) > ν(X) + ν(JX(F ))

and by Lemma 6.2 (bπ) holds, and Whitney’s condition (b) holds using (a) and Remark 2.1.
We shall assume from now on that ν(t) < ν(X).

ν(
∂F

∂x
) = inf{2ν(x), ν(t) + αν(y)} (14)

we have:

(1) either 2ν(x) ≥ ν(t) + αν(y), and then we must have ν(x) > ν(y) and

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + αν(y)

> ν(y) + ν(t) + αν(y)

≥ ν(X) + ν(
∂F

∂x
) (by (14))

≥ ν(X) + ν(JX(F )),

so that as in section 8 we obtain that (bπ) holds, using Lemma 6.2;

(2) or we have 2ν(x) < ν(t) + αν(y), and then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + αν(y)

> ν(x) + 2ν(x)

≥ ν(x) + ν(
∂F

∂x
) (by (14))

≥ ν(X) + ν(JX(F )),

and again (bπ) holds by Lemma 6.2.

It follows that from now on we are reduced to studying the case when

ν(
∂F

∂x
) > inf{2ν(x), ν(t) + αν(y)}, (15)

and hence that

2ν(x) = ν(t) + αν(y). (16)

Now we are assuming that F ◦ γ ≡ 0, i.e.

x3 + txyα = −yβz − z3α. (17)

Write

x3 + txyα = −2x3 + x
∂F

∂x
.

Then (15) implies that

ν(x3 + txyα) = 3ν(x).

Using (17) we see that

3ν(x) ≥ inf{βν(y) + ν(z), 3αν(z)}
and that

3ν(x) = inf{βν(y) + ν(z), 3αν(z)} if ν(y) 6= 2ν(z), (18)

using that 3α− 1 = 2β.
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(i) If ν(y) > 2ν(z) then, by (18), ν(x) = αν(z). Also

ν(
∂F

∂z
) = (3α− 1)ν(z). (19)

Then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + αν(y)

> ν(t) + 3αν(z)

> ν(z) + ν(
∂F

∂z
) (by (19))

≥ ν(X) + ν(JX(F ))

so that (bπ) holds by Lemma 6.2.

(ii) If ν(y) = 2ν(z), then from (16) it follows immediately that ν(x) > αν(z).
Now

ν(
∂F

∂y
) = inf{ν(t) + ν(x) + (α− 1)ν(y), (β − 1)ν(y) + ν(z)}

= inf{3ν(x)− ν(y), (2β − 1)ν(z)} (by (16))

= inf{3ν(x)− 2ν(z), (3α− 2)ν(z)} (since ν(y) = 2ν(z))

= (3α− 2)ν(z) (since ν(x) > αν(z).)

Then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + αν(y)

= 3ν(x) (by (16))

> 3αν(z)

= ν(z) + (3α− 1)ν(z)

> ν(z) + ν(
∂F

∂y
)

≥ ν(X) + ν(JX(F )),

and (bπ) holds by Lemma 6.2.

(iii) If ν(y) < 2ν(z), we have

3ν(x) = βν(y) + ν(z),

and (16) gives

ν(x) + ν(t) = (β − α)ν(y) + ν(z).

Thus we can suppose from now on that

ν(x) + ν(t) = (β − α)ν(y) + ν(z) (20)

and

ν(y) < 2ν(z).

We carry on with the last cases:
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(I) If ν(z) > ν(y) we have

ν(z3α−1) = ν(z2β) > ν(yβ)

so that

ν(
∂F

∂z
) = βν(y).

Then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + αν(y)

= ν(z) + βν(y)

> ν(y) + ν(
∂F

∂z
)

≥ ν(X) + ν(JX(F )),

and (bπ) holds by Lemma 6.2

(II) If 2ν(z) > ν(y) > ν(z), then

ν(z3α−1) = ν(z2β) > ν(yβ)

so that

ν(
∂F

∂z
) = βν(y) > (β − 1)ν(y) + ν(z).

Now

y
∂F

∂y
= αtxyα + βyβz

= αtxyα − β(x3 + txyα + z3α) (on F−1(0))

= −βx3 − (β − α)txyα − βz3α,

= x(tyα − β

3
(
∂F

∂x
))− βz3α (21)

since 3α = 2β + 1.
Also

ν(z3α) = 3αν(z)

= ν(z) + 2βν(z)

> ν(z) + β(y)

= ν(txyα) (by (20))

so we have that

ν(z3α) > ν(txyα). (22)

From (15) and (16),

ν(
∂F

∂x
) > ν(t) + αν(y). (23)

Using (21), (22) and (23) we find that

ν(y
∂F

∂y
) = ν(txyα),

and thus

ν(
∂F

∂y
) = ν(txyα−1). (24)
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Then

ν(t) + ν(
∂F

∂t
) = ν(t) + ν(x) + αν(y)

= ν(txyα−1) + ν(y)

> ν(txyα−1) + ν(z)

= ν(
∂F

∂y
) + ν(z) (by (24))

≥ ν(X) + ν(JX(F )),

and again (bπ) holds by Lemma 6.2.

Résumé: a germ of arc along which Whitney condition (b) is not satisfied must
fulfil the following conditions:

• ν(x) > ν(y) = ν(z) > ν(t)
• ν(x) + ν(t) = (β − α)ν(y) + ν(z)
• 2ν(x) = ν(t) + αν(y)

Finally the set of germs of analytic arcs along which Whitney condition (b) is not satisfied is
contained in the set
A := { γ(s) = (x(s), y(s), z(s), t(s)) : [0, 1]→ Cn × C |

x(s) = a1s
α1 + · · ·

y(s) = a2s
α2 + · · ·

z(s) = a3s
α3 + · · ·

t(s) = a4s
α4 + · · ·

3α1 = (β + 1)m,α2 = α3 = m, 3α4 = m,α ≡ 0[3], ai ∈ C∗ satisfying some conditions } .
It remains to characterize the subset of arcs along which the (δ) condition is not satisfied.
Let γ ∈ A. We may suppose a1 = 1, and write a2 = a, a3 = b and a4 = c.
Now

F ◦ γ(s) = (s(β+1)m + ...) + (c.aαs(β+1)m + . . .) + (aβbs(β+1)m + . . .) + (b3αs3αm + . . .)

≡ 0,

so then
s(β+1)m(1 + aα.c+ aβ .b+ s(. . .+ b3αsβm + . . .)) ≡ 0,

and we must have
1 + c.aα + b.aβ = 0.

Hence along γ(s) near s = 0 we have,

∂F

∂x
= 3x2 + tyα = s

2(β+1)m
3 α(3 + caα) + . . .

∂F

∂y
= αtxyα−1 + βyβ−1z = (αcaα−1 + βb.aβ−1)sβm + . . .

∂F

∂z
= yβ + 3αz3α−1 = yβ + 3αz2β = aβsβm + . . .+ (2β)b2β)s(2β)m + . . . .

However, the condition

ν(
∂F

∂x
) > βm

implies that
3 + caα = 0
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and it follows that

c = − 3

aα
, b =

2

aβ

and so

αc.aα−1 + βb.aβ−1 = −1

a
.

The limit of orthogonal secant vectors

(x, y, z)

‖(x, y, z)‖
is thus

(0 : a : b) = (0 : a :
2

aβ
),

and the limit of normal vectors
gradxF (x, y, z, t)

‖gradxF (x, y, z, t)‖
is

(0 : αc.aα−1 + βb.aβ−1 : aβ) = (0 : −1

a
: aβ).

It follows that (δ) is not satisfied along γ if and only if

a2β+2 = −2.

Choosing α to be one of these 2β+2 = 3α+1 complex numbers, we have the desired conclusion,
i.e. that (δ) fails.

10. Other examples.

A Milnor number constant family,

Ft(x, y, z) = z12 + zy3x+ ty2x3 + x6 + y5,

with µ = 166, which is also not Whitney regular over the t-axis, was studied by E. Artal Bartolo,
J. Fernandez de Bobadilla, I. Luengo and A. Melle-Hernandez in a recent paper [2]. Also a series
of Milnor number constant but non Whitney regular families, depending on a parameter `, was
given by Abderrahmane [1] as follows:

F `t (x, y, z) = x13 + y20 + zx6y5 + tx6y8 + t2x10y3 + z`,

for integers ` ≥ 7. Here µ = 153` + 32, while µ2(F0) = 260 and µ2(Ft) = 189, according to
Abderrahmane. We do not yet know whether weak Whitney regularity holds or fails for these
examples.
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