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Exchange between perverse and weight filtration for the

Hilbert schemes of points of two surfaces
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Abstract

We show that a natural isomorphism between the rational cohomology groups of the
two zero-dimensional Hilbert schemes of n-points of two surfaces, the affine plane minus
the axes and the cotangent bundle of an elliptic curve, exchanges the weight filtration
on the first set of cohomology groups with the perverse Leray filtration associated with
a natural fibration on the second set of cohomology groups. We discuss some associated
hard Lefschetz phenomena.

1 Introduction

1.1 The main result

The theory of mixed Hodge structures endows the rational cohomology groups H∗(Z,Q) of
a complex algebraic variety Z with the increasing weight filtration WZ . On the other hand,
given a map f : Z −→ Z ′ of algebraic varieties, the theory of perverse sheaves (with middle
perversity) endows the rational cohomology groups H∗(Z,Q) with the increasing perverse
Leray filtration PZ (see [12], for example).

In [4], it was proved that the non-Abelian Hodge theory diffeomorphism between the
twisted character varietyMB of representations of a compact Riemann surface C into GL2(C)
and the moduli spaceMDol of rank 2 degree 1 stable Higgs bundles on C identifies the weight
filtration WMB

with the perverse filtration PMDol
induced by the projective Hitchin map

χ :MDol → A. The so-called P = W conjecture, i.e. that this phenomenon should be valid
for other groups, such as GLn(C), has received some evidence in [2] in a string-theoretic
framework.

However, at present, we are unable to use the approach of [4] to attack this conjecture in
the case of GL(n,C) for n > 2. One exception is the case of the moduli space of rank n stable
mirabolic Higgs bundles on an elliptic curve E. Thanks to [18], in this case we have a global
understanding of this moduli space as the Hilbert scheme of n points X [n] on the complex
surface X := T∨(E) ' E × C the total space of the cotangent bundle of E. Additionally,
the Hitchin map becomes a proper flat map hn : X [n] → C(n) ' Cn of relative dimension n
onto the n-th symmetric product C(n) of C, which can be understood explicitly. In a similar
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vein one can prove that a corresponding character variety is isomorphic to Y [n] the Hilbert
scheme of n points of the surface Y := C∗×C∗, whose Hodge theory is well understood. The
expectation from the P = W conjecture is that the we again have an exchange of filtration
phenomenon.

Indeed the main result of this paper is Theorem 4.1.1 which establishes that there is a
natural isomorphism of graded vector spaces φ[n] : H∗(X [n],Q) ' H∗(Y [n],Q) that exchanges
the perverse Leray filtration for the map hn with the halved weight filtration :

φ[n] (PX[n]) = 1
2
WY [n] .

In words, the inverse of the isomorphism φ[n] sends a class of type (p, p) for WY [n] to a class in
in PX[n],p. Theorem 4.3.2 relates the hard Lefschetz theorem on the products of symmetric
products of the curve E with the relative hard Lefschetz theorem for the map hn and with
a “curious” hard Lefschetz theorem on the cohomology of Y [n].

The example dealt with in this paper presents a striking difference with respect to the
one treated in [4]. In the latter case, due to Nĝo’s support theorem, most of the perverse
sheaves showing up in the decomposition theorem are supported on the whole target space of
the Hitchin map. On the other hand, in the case treated here, every stratum in C(n) of the
map hn : X [n] → C(n) contributes several perverse sheaves showing up in the decomposition
theorem.

At the moment, we cannot explain the exchange of filtration phenomena described above,
beyond the fact that we can observe them. In §4.4 we discuss some properties shared by
the example considered in this paper and the one treated in [4], and we speculate on the
possibility of a more general statement regarding the phenomenon of exchange of filtrations.

1.2 Notation

We work over the field of complex numbers C and with singular cohomology with rational
coefficients Q. The results hold with no essential changes over any algebraically closed field
and with Q`-adic cohomology. A variety is a separated scheme of finite type over C.

We employ freely the language of derived categories, perverse sheaves and the decomposi-
tion theorem as well as the language of Deligne’s mixed Hodge structures (MHS); the reader
may consult [1], the survey [11] and the textbooks [15, 21, 23, 26]. For the convenience of
the reader we summarize our notation and terminology below.

Given a variety Z, we work with the full subcategory DZ of the derived category of the
category of sheaves of rational vector spaces on Z given by those bounded complexes K on
Z whose cohomology sheaves Hi(K) on Z are constructible; a sheaf on Z is constructible
if there is a partition Z =

∐
Za of Y given by locally closed subvarieties such that the

restriction F|Za is locally constant for every a. We denote the i-th perverse cohomology sheaf
of a complex K on Z by pHi(K); it is a perverse sheaf on Z. Given a map f : Z → Z ′ of
algebraic varieties, we denote the derived direct image functor Rf∗ simply by f∗ and the i-th
direct image functor by Rif∗.

A filtration F on a vector space is a finite increasing filtration

. . . ⊆ FiV ⊆ Fi+1V ⊆ . . . ;

finite means that FiV = {0} for i � 0 and Fi = V for i � 0. A filtration F on V has type
[a, b] if Fa−1V = {0} and FbV = V .
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Given a variety Z, the weight filtration on the cohomology groups Hd(Z,Q) is denoted
by WZ . A map f : Z → Z ′ endows the cohomology groups Hd(Z,Q) with two distinct
filtrations, the Leray filtration LZ and the perverse Leray filtration PZ .

In this paper, we are concerned with the Hilbert schemes of n points X [n] and Y [n]

associated with the two complex surfaces X := T∨E ' E×C, the total space of the cotangent
bundle of an elliptic curve E, and Y := C∗ ×C∗. We shall consider a certain natural proper
map hn : X [n] → C(n).

2 The Hilbert scheme of a surface and its cohomology
groups

2.1 The decomposition theorem for the Hilbert-Chow map
πn : S[n] → S(n)

Let S be a nonsingular connected complex analytic surface S and n ≥ 0 be a non-negative
integer. We refer the reader to [5, 6, 8, 16, 25] for background and references on Hilbert
schemes of surfaces.

We denote by S(n) := Sn/Sn the n-th symmetric product of S, i.e. the quotient of
Sn by the obvious action of the n-th symmetric group. A partition of ν = {ν1, . . . , νl} of
n is an unordered collection of positive integers such that ν1 + . . . + νl = n; the integer
l = l(ν) is called the length of ν. A point x ∈ S(n) gives rise to a partition ν = ν(x),
for x admits a unique representation as a formal sum ν1s1 + . . . + νlsl, with νi positive

integers adding up to n, and si ∈ S distinct. The subset S
(n)
ν ⊆ S(n) of points yielding

the same partition ν is a locally closed, irreducible, nonsingular subvariety of S(n) and we
have that the symmetric product S(n) is the disjoint union over the set of partitions on n of

these subvarieties: S(n) =
∐
ν S

(n)
ν . A partition ν gives rise to a new variety S(ν) as follows:

represent the partition ν as a symbol 1a12a2 · · ·nan , where ai is the number of times i appears
in ν; the ai ≥ 0, the length l(ν) =

∑
ai and n =

∑
i i ai; finally, define S(ν) :=

∏
i S

(ai) to
be the indicated product of symmetric product of S. If we define, Sν :=

∏
Sai , then

S(ν) = Sl(ν)/Sν . There is a natural finite map r(ν) : S(ν) → S(n) with image the closure

S
(n)
ν and the resulting map S(ν) → S

(n)
ν is the normalization of the image.

The Hilbert scheme S[n] of zero-dimensional length n subschemes of S is a connected
complex manifold of dimension 2n and, if S is algebraic, then so is S[n]. There is the n-th
Hilbert-Chow map πn : S[n] → S(n) sending a scheme to its support, counting multiplicities;
this map is proper and it is a resolution of singularities of the symmetric product.

In view of [8], §2.5, by using the correspondences in S(ν) ×S(n) S[n] inside S(ν) × S[n] the
decomposition theorem for the map πn yields a canonical isomorphism in the category DS(n) :

γ
[n]
S : =

∑
ν γ

(ν)
S :

⊕
ν r

(ν)
∗ QS(ν) [2l(ν)]

' // π∗QS[n] [2n]. (1)

2.2 The MHS on H∗(S[n],Q)

If S is algebraic, then, by using the compatibility (see [9]) with MHS of the constructions
leading to the isomorphism (1), we obtain a canonical isomorphism of MHS (recall that a
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Tate twist in cohomology (−i) increases the weights by 2i):

γ
[n]
S =

∑
γ
(ν)
S :

⊕
ν

(
H∗−2[n−l(ν)]

(
S(ν),Q

)
(l(ν)− n)

) ' // H∗
(
S[n],Q

)
. (2)

The fact that the two sides of (2) are isomorphic has been first proved in [17] by using the
theory of mixed Hodge modules.

Given a partition ν of n, consider the mixed Hodge substructure

H∗ν

(
S[n],Q

)
:= Im γ

(ν)
S ' H∗−2[n−l(ν)]

(
S(ν),Q

)
(l(ν)− n) (3)

so that the isomorphism of MHS (2) now reads as the internal direct sum decomposition

H∗
(
S[n],Q

)
=
⊕
ν

H∗ν

(
S[n],Q

)
. (4)

2.3 The map φ[n] induced by a diffeomorphism S2 ' S1

The canonical isomorphism (2) has the following simple consequence. Let S1 and S2 be two
nonsingular surfaces and

φ : H∗(S1,Q) ' H∗(S2,Q) (5)

be an isomorphism of graded vector spaces. By taking tensor products and invariants, the
map φ induces, for every partition ν, an isomorphism of graded vector spaces

φ(ν) : H∗(S
(ν)
1 ,Q) ' H∗(S(ν)

2 ,Q).

By using the isomorphisms (1), we define the map

φ[n] :=
(
γ
[n]
S2

)
◦

(∑
ν

φ(ν)

)
◦
(
γ
[n]
S1

)−1
: H∗

(
S
[n]
1 ,Q

)
' H∗

(
S
[n]
2 ,Q

)
(6)

which is an isomorphisms of graded vector spaces.
If the surfaces Si are algebraic and φ is an isomorphism of MHS, then so is (6). However,

in this paper we use this set-up in the case: S1 = E×C (E an elliptic curve) and S2 = C∗×C∗
and φ = Φ∗, where Φ : S2 ' S1 is a diffeomorphism. In this case, due to the incompatibility
of the weights, φ and φ[n] cannot be isomorphisms of MHS.

It is likely that the results in [27] imply that if we have a diffeomorphism S2 ' S1 of

nonsingular algebraic surfaces, then there is a diffeomorphism S
[n]
2 ' S

[n]
1 . At present, we do

not know this and we do not need it here.

3 The surfaces X and Y and the filtrations 1
2
WY [n] and

PY [n]

For the remainder of the paper, we fix n ≥ 0, an elliptic curve E and we set

Y := C∗ × C∗, X := T∨E ' E × C,
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i.e. X is the total space of the cotangent (canonical) bundle of E. The isomorphism above
is well-defined up to multiplication by a non-zero scalar.

The two surfaces X and Y are noncanonically diffeomorphic: choose E to be C/Γ where
Γ is the lattice of Gaussian integers; then use polar coordinates to identify X and Y . Let
Φ : Y ' X be any diffeomorphism and set φ := Φ∗ : H∗(X,Q) ' H∗(Y,Q). We are in the
situation of §2.3.(5) so that, for every n ≥ 0, we obtain the linear isomorphism (6) of graded
vector spaces

φ[n] : H∗
(
X [n],Q

) ' // H∗
(
Y [n],Q

)
. (7)

As it was observed in §2.3, for n ≥ 1, the two sides are never isomorphic as MHS. In
particular, (7) does not preserve the weight filtrations.

Let us remark that each Hd(X [n],Q) is a pure Hodge structure of weight d. Since
H∗(X,Q) ' H∗(E,Q) is an isomorphism of MHS, we have that the same is true for
H∗(X(ν),Q) ' H∗(E(ν),Q) for every partition ν of n. In view of the splitting of MHS
(4), we have the following canonical isomorphism of MHS

H∗(X [n],Q)
(4)
=
⊕
ν

H∗ν (X [n],Q) '
⊕
ν

H∗−2[n−l(ν)](E(ν),Q)(l(ν)− n).

Since each Hd(E(ν),Q) is pure of weight d, we conclude that each Hd(X [n],Q) is pure of
weight d as well. In particular, the weight filtration WX[n] on H∗(X [n],Q) is simply the
filtration by cohomological degree and this should be contrasted with Proposition 3.1.2.

3.1 The halved weight filtration 1
2
WY [n] on H∗((C∗ × C∗)[n],Q)

In this section, we first compute the MHS on H∗(Y [n],Q) and determine the weight filtration
WY [n] on H∗(Y [n],Q). We then observe that WY [n] has no odd weights so that we can define
the halved weight filtration 1

2
WY [n], k := W2k on H∗(Y [n],Q) by simply halfing the weights.

Recall that: an MHS is of Hodge-Tate type if the odd graded pieces of the weight filtration
are zero and every even graded piece GrW

2p is of pure type (p, p); an MHS is split of Hodge-Tate
type if it is isomorphic to a direct sum of pure MHS of Hodge-Tate type.

Lemma 3.1.1 For every partition ν of n, the natural MHS on H∗(Y (ν),Q) is split of Hodge-
Tate type and, more precisely,

Hd
(
Y (ν),Q

)
is pure of weight 2d and Hodge-type (d, d),

0 = W2d−1 ⊆ W2d = Hd(Y (ν),Q).

Proof. Since Hd(C∗,Q) has type (d, d), for d = 0, 1, and it is trivial otherwise, the statement
follows from the Künneth isomorphism and the naturality of the mixed Hodge structure for
the inclusion Hd(Y (ν),Q) ⊆ Hd(Y l(ν),Q) coming from the quotient map

Y l(ν) −→ Y l(ν)/Sν = Y (ν).

The following proposition is an immediate consequence of Lemma 3.1.1 and of the equality
of MHS (4).
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Proposition 3.1.2 The natural mixed Hodge structure on H∗(Y [n],Q) is split of Hodge-Tate
type. More precisely, in terms of the decomposition (4), we have:

W2kH
d
(
Y [n],Q

)
=

⊕
d−(n−l(ν))≤k

Hd
ν

(
Y [n],Q

)
, W2k = W2k+1.

Proposition 3.1.2 allows us to define the halved weight filtration 1
2
WY [n] by setting

1
2
WY [n],k := WY [n],2k.

The halved weight filtration 1
2
WY [n] on H∗(Y [n],Q) has type [0, 2n].

3.2 Decomposition theorem for the Hitchin-like fibration
hn : X [n] → C(n)

Let p : X → C be the induced projection. Recall the notation in §2.2. We have the
commutative diagram

X [n]

πn
��

hn

}}

X l(ν) = El(ν) × Cl(ν)
/Sν //

pl(ν)

��

X(ν)
r
(ν)

X //

p(ν)

��

X(n)

p(n)

��
Cl(ν)

/Sν // C(ν)
r
(ν)

C // C(n).

(8)

The maps pl(ν) and p(ν) are of relative dimension l(ν) and the map p(n) is of relative dimension
n. In particular, note that

dim
{
p(n)

−1 (
C(n)
ν

)}
= l(ν) + n, dim

{
p(ν)

−1 (
C(ν)
ν

)}
= 2l(ν).

The fiber of p(ν) over the general point of C(ν) is isomorphic to El(ν). All the other fibers
are isomorphic to quotients of El(ν) under the action of suitable, not necessarily normal,
subgroups groups of the finite group Sν . The fibers over the points in the small diagonal
in C(ν) are all isomorphic to E(ν) = El(ν)/Sν so that, by the compatibility with MHS of
Grothendieck’s theorem on the rational cohomology of quotient varieties, we have a canonical
isomorphism of MHS

H∗
(
E(ν),Q

)
= H∗

(
El(ν),Q

)Sν
. (9)

The map hn : X [n] → C(n) is projective of relative dimension n = 1
2 dimX [n] = dimC(n),

flat by [24], Corollary to Theorem 23.1, and, as it is observed above, it has general fiber the
Abelian variety En.

Remark 3.2.1 We say that hn is a Hitchin-type map because of the analogy it presents with
the Hitchin map associated with the moduli of Higgs bundles on a curve, where the dimensions
of domain M , target A and fibers F are related as above: dimM = 2 dimA = 2 dimF and
also because our main result Theorem 4.1.1 is analogous to the main result of [4], which deals
with rank two Higgs bundles of odd degree on a curve.
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Due to the commutativity of the diagram (8) and to the functoriality of derived push-
forwards applied to hn = p(n) ◦ πn, the decomposition theorem (1) for the map πn implies
that we have natural isomorphisms⊕

ν r
(ν)
C∗ p

(ν)
∗ QX(ν) [2l(ν)] //⊕

ν p
(n)
∗ r

(ν)
X∗QX(ν) [2l(ν)]

' // hn∗QX[n] [2n].

By applying Grothendieck’s theorem on the invariant part of push-forwards under a quotient
map under a finite group action, and by recalling that pl(ν) is a projection map, we get a
canonical isomorphism

p
(ν)
∗ QX(ν) =

(
p
l(ν)
∗ QX(ν)

)Sν
=

2l(ν)⊕
i=0

(
Rip

l(ν)
∗ Q

)Sν
[−i].

We thus get the distinguished splitting isomorphism in the category DC(n)

Γ
[n]
X :

⊕
ν

⊕2l(ν)
i=0

{[
r
(ν)
C∗

(
Rip

l(ν)
∗ Q

)Sν]
[l(ν)]

}
[−(i− l(ν))]

' // h∗QX[n] [2n].

(10)
Since every r(ν) is finite, every direct summand in square brackets is an ordinary sheaf

(not just a complex). Moreover, since the functors r
(ν)
∗ are t-exact, every summand in

curly brackets is a perverse sheaf, in fact an intersection cohomology complex with twisted

coefficients supported on C(n)
ν ⊆ C(n).

It follows that (10) “is” the decomposition theorem for the map hn in the sense that we
decomposed the right-hand-side as direct sum of shifted intersection cohomology complexes
supported on C(n). We note that, unlike the general statement of the decomposition theorem,
we have obtained (10) as a distinguished isomorphism.

In order to simplify the notation, we set

Riν := r
(ν)
C∗

(
Rip

l(ν)
∗ Q

)Sν
.

For our purposes, it is convenient to re-write (10) in the following two different ways, where
the former emphasizes the perverse-sheaf-nature of the summands, and the latter emphasizes
the ordinary-sheaf-nature of the summands. One merely needs to apply the appropriate shift
and re-organize the terms. By abuse of notation, we denote the resulting maps with the same

symbol Γ
[n]

X[n] :

Γ
[n]
X :

⊕2n
t=0

(⊕
i+(n−l(ν))=tR

i
ν [l(ν)]

)
[n− t] ' // hn∗QX[n] [n]; (11)

Γ
[n]
X :

⊕2n
k=0

(⊕
i+2(n−l(ν))=k R

i
ν

)
[−k]

' // hn∗QX[n] . (12)

We now turn to the decompositions in cohomology stemming from the isomorphism(s)

Γ
[n]

X[n] . By taking components in (10), we have the equality of maps in the derived category

Γ
[n]
X =

∑
ν

Γ
(ν)
X =

∑
ν

2l(ν)∑
i=0

Γ
(ν),i
X
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and, by taking the images in cohomology, we set

G∗ν

(
X [n],Q

)
:= Im Γ

(ν)
X ⊆ H∗

(
X [n],Q

)
. (13)

By the very construction of the splitting (10), i.e. the fact that is it obtained by pushing
forward (1), we have that

Gν

(
X [n],Q

)
:
(13)
= Im Γ

(ν)
X = Im γ

(ν)
X

(3)
=: H∗ν

(
X [n],Q

)
⊆ H∗

(
X [n],Q

)
,

or, in words, the two distinguished splittings of H∗(X [n],Q) into ν-components arising from
the decomposition theorem for the Hilbert-Chow map πn and for the Hitchin-like map hn
coincide.

For every fixed partition ν of n and for every 0 ≤ i ≤ 2l(ν), we set

H∗ν,i

(
X [n],Q

)
:= Im Γ

(ν),i
X ⊆ H∗ν

(
X [n],Q

)
,

so that

H∗ν

(
X [n],Q

)
=

2l(ν)⊕
i=0

H∗ν,i

(
X [n],Q

)
. (14)

The following lemma shows that in each cohomological degree d, there is at most one
non-zero summand Hd

ν,i(X
[n],Q) in (14).

Lemma 3.2.2 We have the following

Hq
(
C(n), Riν

)
'
{

0 if q 6= 0,
Hi
(
E(ν),Q

)
if q = 0.

In particular, for every d, we have that

Hd
ν

(
X [n],Q

)
= Hd

ν,i=d−2(n−l(ν))

(
X [n],Q

)
' Hd−2(n−l(ν))

(
E(ν),Q

)
.

Proof. We have

Hq

(
C(n), r

(ν)
C∗

(
Rip

l(ν)
∗ Q

)Sν)
= Hq

(
C(ν),

(
Rip

l(ν)
∗ Q

)Sν)
= Hq

(
Cl(ν), Ripl(ν)∗ Q

)Sν
.

Since Cl(ν) is contractible, the groups above are zero whenever q 6= 0. In view of (9), for
q = 0 we have:

H0
(
Cl(ν),

(
Rip

l(ν)
∗ Q

))Sν
= Hi

(
El(ν),Q

)Sν
= Hi

(
E(ν),Q

)
.

This proves the first statement.
According to (10) and the diagram (8), each summand Hd

ν,i(X
[n],Q) is the subspace of

Hd(X [n],Q) injective image of

Hd−2(n−l(ν))−i
(
C(n), r

(ν)
C∗

(
Rip

l(ν)
∗ Q

)Sν)
= Hd−2(n−l(ν))−i

(
C(ν),

(
Rip

l(ν)
∗ Q

)Sν)
=
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(
Hd−2(n−l(ν))−i

(
Cl(ν),

(
Rip

l(ν)
∗ Q

)))Sν
.

The second statement now follows from (14) and from the first statement.
Summarizing: we have that for every d:

Hd
(
X [n],Q

)
=
⊕
ν

H∗ν

(
X [n],Q

)
=

⊕
ν

Hd
ν,d−2(n−l(ν))

(
X [n],Q

)
'
⊕
ν

Hd−2(n−l(ν))
(
E(ν),Q

)
. (15)

3.3 The perverse Leray filtration PX[n] on H∗(X [n],Q)

The theory of perverse sheaves endows H∗(X [n],Q) with the perverse Leray filtration PX[n] ,
i.e. with the perverse filtration associated with the complex hn∗QX[n] [n]; see [12]. Note
that if we replace hn∗QX[n] [n] with another shift hn∗QX[n] [m], the resulting filtrations gets
translated. We have made the choice m = n so that, in view of (11), the result has the same
type [0, 2n] as the one of 1

2
WY [n] .

While, in general, the perverse (Leray) filtration is canonically defined, there is no natural
splitting of it. In our situation, in view of (11) and of (15), we have that the perverse Leray
filtration is naturally split:

PX[n],pH
d
(
X [n],Q

)
=
⊕
t≤p

⊕
d−(n−l(ν))=t

Hd
ν

(
X [n],Q

)
=

⊕
d−(n−l(ν))≤p

Hd
ν

(
X [n],Q

)
. (16)

Remark 3.3.1 In view of the expression (12), it is straightforward to verify with the aid of
Lemma 3.2.2 that the ordinary Leray filtration LX[n] on H∗(X [n],Q) for the map hn is the
filtration by cohomological degree. In particular, by comparing with (16), it is clear that the
Leray filtration is strictly included in the perverse Leray filtration.

4 The main result, relation with hard Lefschetz, and a
speculation

4.1 “PX[n] = 1
2
WY [n]”

We are now ready to state and prove the main result of this paper.

Theorem 4.1.1 For every n ≥ 0, the map φ[n] (7) is a filtered isomorphism, i.e.

φ[n](PX[n]) = 1
2
WY [n] .

Proof. By its very definition, the map φ[n] is a direct sum map with respect to the ν
decompositions (4) for S = X and S = Y , respectively It remains to apply Proposition 3.1.2
and (16).
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We would like to remark on the exceptional circumstance highlighted by Theorem 4.1.1.
In view of the canonical splitting (16), we say that a class a ∈ Hd(X [n],Q) has perversity p
if a ∈ ⊕d−(n−l(ν))=pHd(X [n],Q). Theorem 4.1.1 shows that, regardless of the (r, s) type of a

with respect to the pure Hodge structure Hd(X [n],Q), we have that φ[n](a) ∈ Hd(Y [n],Q) has
type (p, p) and, more precisely, lives in the (p, p) part of the split Hodge-Tate type structure.

The proof of Theorem 4.1.1 is heavily based on the fact that we have constructed the
explicit splitting (16) of the perverse Leray filtration. There is a different approach which is
based on the following geometric description [12] of the perverse Leray filtration: let s ≥ 0
and let Λs ⊆ C(n) ' Cn be a general s-dimensional linear section of Cn; then

PX[n],pH
d
(
X [n],Q

)
= Ker

{
Hd
(
X [n],Q

)
−→ Hd

(
h−1n (Λd−p−1),Q

)}
.

While we omit the details of this approach, we do point out the basic fact leading to the
identification of the kernel above with the right-hand-side of (16): a general linear section

Λd−p−1 avoids the closure of a stratum C(n)
ν , which has dimension l(ν), if and only if

d− (n− l(ν)) ≤ p.

4.2 The curious hard Lefschetz (CHL) for H∗((C∗ × C∗)[n],Q)

Let (z, w) be coordinates on Y = C∗ × C∗. The 2-form

αY :=
1

(2iπ)2
dz ∧ dw
zw

is closed and defines an integral cohomology class which we denote with the same symbol.
We have αY ∈ H2(Y,Q) ∩H2,2(Y ). Let pi : Y n → Y be the i-th projection. Set

αY n =

n∑
i=1

p∗iαY ∈ H2(Y n,Q) ∩H2,2(Y n).

Let αY (n) ∈ H2(Y (n),Q)∩H2,2(Y (n)) and αY (ν) ∈ H2(Y (ν),Q)∩H2,2(Y (ν)) be the naturally
induced classes. Let

αY [n] := π∗nαY (n) ∈ H2(Y (n),Q) ∩H2,2(Y (n))

be the pullback via the Hilbert-Chow map πn : Y [n] → Y (n).
Note that because of Hodge type, none of the α-type classes above is the first Chern class

of a holomorphic line bundle on Y [n]. Nonetheless, a simple explicit computation based on
Proposition 3.1.2 shows that cupping with the powers of αY [n] , gives rise to isomorphisms

Gr
W
Y [n]

2n−2kH
∗(Y [n],Q)

αk
Y [n]

'
// Gr

W
Y [n]

2n+2kH
∗+2k(Y [n],Q). (17)

These isomorphisms are analogous to the “curious hard Lefschetz” theorem of [19]. Its
curiosity consists of the fact that it is a statement concerning a (2, 2) class on a noncompact
variety, instead of a (1, 1)-class on a projective variety. This apparently mysterious fact
receives an explanation from the coincidence of the halved weight filtration with the perverse
Leray filtration proved in the main Theorem 4.1.1.
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Question 4.2.1 What corresponds to the CHL (17) under the identification

H∗(Y [n],Q) ' H∗(X [n],Q)

given by (7)? We answer this question in Theorem 4.3.2.

4.3 CHL on Y [n] ⇔ the HL on E(ν) ⇔ RHL for hn

In this section, we say that a rational cohomology class of degree two on a variety Z is good
(resp. ample) if it is a non-zero (resp. positive) rational multiple of the Chern class of an
ample line bundle on Z. The point of this definition is that the hard Lefschetz theorem holds
for a good class on a nonsingular projective manifold as well as on its quotients by a finite
group acting by algebraic isomorphisms.

Fix any diffeomorphism Φ : Y = C∗×C∗ ' X = E×C. We obtain the linear isomorphism
(7) of graded vector spaces: φ[n] : H∗(X [n],Q) ' H∗(Y [n],Q).

Let αX , αXn , αX(n) , αX(ν) , αX[n] be the classes obtained by transplanting the α-classes
defined starting from Y in section 4.2 via φ−1[n] .

Note that by construction, for every surface S, the inclusion H∗(S(n),Q) ⊆ H∗(S[n],Q)
is given by the pull-back π∗n via the Hilbert-Chow map πn : S[n] → S(n). In particular, we
have that αX[n] = π∗nαX(n) . This has to be verified in view of the fact that φ[n] has not been

defined using a diffeomorphism Y [n] ' X [n] between the Hilbert schemes.
Note that φ[n] is not a map of MHS (this is already apparent for n = 1). On the other

hand, since H2(X,C) = H2(E × C) ' H2(E,C) = H1,1(E), we see that all the α-classes
αX , . . . , αX[n] are in fact in H2(−,Q) ∩H1,1(−).

Moreover, the class αX ∈ H2(X,Q) ' Q, being non-zero, is automatically good. In fact,
it is ample if and only if the diffeomorphism Φ : Y ' X preserves the canonical orientations
of the complex analytic surfaces.

It follows that the α-classes αX , αXn , αX(n) and αX(ν) are good. Since αX(ν) is good, so
is its restriction to the fibers of X(ν) → C(ν). The fibers of this map over points in the dense
open stratum of C(ν) consisting of multiplicity-free cycles are isomorphic to the product El(ν).
Over the remaining points, the fibers are isomorphic to finite quotients El(ν)/G, where the
G are suitable subgroups of Sν (see section 2.2).

On the other hand, if n ≥ 2, then αX[n] is not good: being a pull-back from X(n), it
is trivial on the positive dimensional projective fibers of the Hilbert Chow birational map
πn : X [n] → X(n), a fact that prohibits goodness.

In view of the identifications of Lemma 3.2.2 and of the fact that αX(ν) and its restriction
to E(ν) are good, we have that the classical hard Lefschetz isomorphisms for the nonsingular
projective E(ν) of dimension l(ν) reads as follows

αj
X(ν) : H l(ν)−j

ν

(
X [n],Q

)
= H l(ν)−j

(
E(ν),Q

)
'−→ H l(ν)+j

(
E(ν),Q

)
= H l(ν)+j

ν

(
X [n],Q

)
.

(18)

Remark 4.3.1 Since αX[n] is a pull-back from X(n), its action via cup product on

πn∗QX[n] [2n]
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is diagonal with respect to the decomposition into ν-summands (1). Moreover, the induced
action on each ν-summand is the action via cup product with αX(ν) . The same holds after
taking cohomology.

The hard Lefschetz isomorphisms (18) express a property of this cup product action with
αX[n] in cohomology. In fact, (18) is the reflection in cohomology of the fact that the con-
clusion of the relative hard Lefschetz theorem ([1], Theorem 5.4.10; see also [10]) holds for
the map hn : X [n] → C(n) and for the cup-product action with αX[n] , i.e. that we have
isomorphisms

αj
X[n] : pH−j(hn∗Q[2n])

'−→ pHj(hn∗Q[2n]), (19)

where, in view of (10), the perverse cohomology sheaves are

pHj(hn∗Q[2n]) =
⊕

i−l(ν)=j

Riν [l(ν)].

In fact, the map of perverse sheaves (19) is defined simply because αX[n] ∈ H2(X [n],Q); see
[10]), §4.4. By using the identifications of Lemma 3.2.2, we deduce that the map (19) is an
isomorphism: in fact, in view of the isomorphisms (18), it is an isomorphism on the stalks of
the respective cohomology sheaves.

Recall that αX[n] is not good for n ≥ 2, i.e. it is neither “positive”, nor ”negative” on
the fibers of hn, so that the relative hard Lefschetz theorem does not apply in this context,
yet we have (19). This situation is similar to the one of the paper [7], where the notion of
lef line bundles has been introduced and where it is proved that it is strongly linked to the
hard Lefschetz theorem. The relation with the present situation is that, up to sign, αX[n] is
not ample on the fibers of hn, but it is lef.

Recalling the expression (16) for the perverse Leray filtration and Remark 4.3.1, a di-
rect calculation using the hard Lefschetz isomorphisms (18) and Theorem 4.1.1 implies the
following result, which answers Question 4.2.1.

Theorem 4.3.2 Under the identification φ[n] : H∗(X [n],Q) = H∗(Y [n],Q), the CHL (17)
becomes the (relative) hard Lefschetz (19).

We conclude this section by remarking that the splitting (10) of hn∗QX[n] has a remarkable
property. Deligne’s paper [14] implies that once we have the relative hard Lefschetz-type
isomorphisms (19), we can construct three a priori distinct isomorphisms between the l.h.s
and the r.h.s of (10). Each one of these three splittings is characterized by a certain property
of the matrices that express the action of the cup product operations

αkX[n] : hn∗QX[n] → hn∗QX[n] [2k]

with respect to the splitting; see [14], p.118 for the definition of this matrix, Proposition 2.7
for the first splitting, section 3.1 for the second, and Proposition 3.5 for the third. In general,
these three splittings differ from each other, e.g. in the case of the projectivization of a vector
bundle with non trivial Chern classes, projecting over the base.

In our situation, there is the fourth splitting (10). The remarkable fact is that, in view
of Remark 4.3.1, it is a matter of routine to verify that the four splittings coincide.
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4.4 Speculating on where to find the exchange of filtrations

The example treated in this paper and the one considered in [4] have some properties in
common which lead us to conjecture that the exchange of filtration occur for a certain class
of varieties and maps. Let us recall the main theorem of [4]:

Consider the moduli space of semistable Higgs bundles MDol parametrizing stable rank
2 Higgs bundles (E, φ) of degree 1 on a fixed nonsingular projective curve C of genus g ≥ 2.
There is the Hitchin proper and flat map h :MDol −→ C4g−3, which gives rise to the perverse
Leray filtration PMDol

. By the non-Abelian Hodge theorem,MDol is naturally diffeomorphic
to the twisted character variety

MB :=
{
A1, B1, . . . , Ag, Bg ∈ GL2(C) | A−11 B−11 A1B1 . . . A

−1
g B−1g AgBg = −I

}
/GL2(C)

where the quotient is taken in the sense of invariant theory. The twisted character variety
MB carries a natural structure of nonsingular complex affine variety, with Hodge structure
of Hodge-Tate type, with a natural splitting.

In complete analogy with Theorem 4.1.1, we have the main result in [4], Theorem 4.2.9

Theorem 4.4.1 In terms of the isomorphism H∗(MB)
'−→ H∗(MDol) induced by the dif-

feomorphism MB
'−→MDol stemming from the non-Abelian Hodge theorem, we have

WMB ,2kH
∗(MB) = WMB ,2k+1H

∗(MB) = PMDol,kH
∗(MDol).

The varieties MDol and X [n] belong to the following class of varieties Z:

1. Z is a quasi-projective nonsingular variety of even dimension 2m endowed with a holo-
morphic symplectic structure ω ∈ H0(Z; Λ2T ∗Z) and with a C∗-action φ : C∗×Z → Z,
such that for φ∗λω = λω for λ ∈ C∗ .

2. The ring Γ(Z,OZ) is finitely generated and the affine reduction map

hZ : Z −→ A = Spec Γ(Z,OZ)

is proper with fibres of dimension m.

3. The induced action on A has a unique fixed point o such that limt→0 t y = o for all
y ∈ A.

Let us note that, under these hypotheses, the Hodge structure on the cohomology groups
Hd(Z,Q) is pure of weight d: the inclusion h−1(o) ⊂ Z induces an isomorphism

Hd(Z,Q) ' Hd(h−1(o),Q)

of MHS; since Z is nonsingular, the weight inequalities ([13] Theorem 8.2.4, iii. and iv.)
imply the purity of H∗(Z,Q).

Additionally we see that if f and g are functions in Γ(A,OA) ∼= Γ(Z,OZ) then we can
write them as f =

∑
i>0 fi and g =

∑
i>0 fi and g =

∑
i>0 gi such that φ∗λ(fi) = λifi and

φ∗λ(gi) = λigi. Then the Poisson bracket satisfies

{f, g} =
∑
i,j>0

{fi, gj} =
∑
i,j>0

1

λ
{φ∗λfi, φ∗λgj} =

∑
i,j>0

λi+j−1{fi, gj}.
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Because λkh = h for k > 0 and generic λ ∈ C∗ only for the zero function, thus we can
conclude {f, g} = 0. Thus hZ is a completely integrable system.

The two examples given in this paper and in [4] lead us to speculate whether it is possible

to associate with every variety Z satisfying the three assumptions above another variety Z̃
such that:

1. Z̃ is a quasi projective nonsingular variety endowed with a holomorphic symplectic
structure.

2. The affine reduction map h
Z̃

: Z̃ −→ Spec Γ(Z̃,O
Z̃

) is birational (hence semismall in
view of [22], Lemma 2.11).

3. There is a natural isomorphism φ : H∗(Z,Q) ' H∗(Z̃,Q).

4. The cohomology groups H∗(Z̃,Q) have a Hodge structure of split Hodge-Tate type.

5. Under the isomorphism φ, the perverse filtration on Z associated with the map h
corresponds to the halved weight filtration on H∗(Z̃,Q): a class of perversity p on Z

would correspond to a class of type (p, p) on Z̃.

Let us remark that, if the above were true, then the Hodge structure of Z̃ cannot be
pure. In fact, in view of the relative hard Lefschetz theorem, the class α ∈ H2(Z,Q) of any

h-ample class on Z has necessarily perversity 2. It would then follows that φ(α) ∈ H2(Z̃,Q)
would have type (2, 2). In view of the conditions we have imposed on the affine reduction
maps of the two varieties, i.e. the fact that hZ is a fibration with middle dimensional fibers
and h

Z̃
is semismall, we like to think that Z is “as complete as possible,” whereas Z̃ is “as

affine as possible.”
At present, we do not know how to attack such a question and we still do not know how

to formulate a principle that would justify the exchange of filtrations.
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