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ADJOINT DIVISORS AND FREE DIVISORS

DAVID MOND AND MATHIAS SCHULZE

Abstract. We describe two situations where adding the adjoint divisor to a divisor D with
smooth normalization yields a free divisor. Both also involve stability or versality. In the
first, D is the image of a corank 1 stable map-germ (Cn, 0) → (Cn+1, 0), and is not free. In

the second, D is the discriminant of a versal deformation of a weighted homogeneous function
with isolated critical point (subject to certain numerical conditions on the weights). Here D
itself is already free.

We also prove an elementary result, inspired by these first two, from which we obtain a

plethora of new examples of free divisors. The presented results seem to scratch the surface
of a more general phenomenon that is still to be revealed.

1. Introduction

Let M be an n-dimensional complex analytic manifold and D a hypersurface in M . The
OM -module Der(− logD) of logarithmic vector fields along D consists of all vector fields on M
tangent to D at all smooth points of D. If this module is locally free, D is called a free divisor.
This terminology was introduced by Kyoji Saito in [Sai80b]. As freeness is evidently a local
condition, so we may pass to germs of analytic spaces D ⊂ X := (Cn, 0), and pick coordinates
x1, . . . , xn on X and a defining equation h ∈ OX = C{x1, . . . , xn} for D.

The module Der(− logD) is an infinite-dimensional Lie sub-algebra of DerX , to be more
precise, a Lie algebroid. Thus free divisors bring together commutative algebra, Lie theory
and the theory of D-modules, see [CMNM05]. Freeness has been used by Jim Damon and the
first author to give an algebraic method for computing the vanishing homology of sections of
discriminants and other free divisors, see [DM91] and [Dam96]. More recently the idea of adding
a divisor to another in order to make the union free has been used by Damon and Brian Pike as
a means of extending this technique to deal with sections of non-free divisors, see [DP11a] and
[DP11b].

Saito formulated the following elementary freeness test, called Saito’s criterion (see [Sai80b,
Thm. 1.8.(ii)]): If the determinant of the so-called Saito matrix (δi(xj)) generates the defin-
ing ideal ⟨h⟩ for some δ1, . . . , δn ∈ Der(− logD), then D is free and δ1, . . . , δn is a basis of
Der(− logD). While any smooth hypersurface is free, singular free divisors are in fact highly
singular: Let SingD be the singular locus of D with structure defined by the Jacobian ideal of
D. By the theorem of Aleksandrov–Terao (see [Ale88, §1 Thm.] or [Ter80, Prop. 2.4]), freeness
of D is equivalent to SingD being a Cohen–Macaulay space of (pure) codimension 1 in D.

The simplest example of a free divisor, whose importance in algebraic geometry is well-
known, is the normal crossing divisor D defined by h := x1 · · ·xn; here, due to Saito’s criterion,
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Der(− logD) is freely generated by the vector fields x1
∂

∂x1
, . . . , xn

∂
∂xn

. In general free divisors
are rather uncommmon: given n vector fields δ1, . . . , δn ∈ DerX , let h be the determinant of
their Saito matrix, and suppose that h is reduced. Then h defines a free divisor if and only if
the OCn-submodule of DerM generated by the δj is a Lie algebra, see [Sai80b, Lem. 1.9]. Thus
to generate examples, special techniques are called for. Non-trivial examples of free divisors
first appeared as discriminants and bifurcation sets in the base of versal deformations of isolated
hypersurface singularities, see [Sai80a], [Ter83], [Loo84], [Bru85], [vS95], [Dam98], [BEGvB09].
Here freeness follows essentially from the fact that Der(− logD) is the kernel of the Kodaira–
Spencer map from the module of vector fields on the base to the relative T 1 of the deformation.

In this paper, we construct new examples of free divisors by a quite different procedure.
Recall that we denote by X the germ (Cn, 0). Let now f : X → (Cn+1, 0) =: T be a finite and
generically 1-to-1 holomorphic map germ. In particular, X is a normalization of the reduced
image D of f . Denote by Fi the ith Fitting ideal of OX considered as OT -module. Mond and
Pellikaan [MP89, Props. 3.1, 3.4, 3.5] showed that D is defined by F0, F1 is perfect ideal of
height 2 restricting to the conductor ideal CD := AnnOD

(OX/OD) which in turn is a principal
ideal of OX . In particular, the reduced singular locus Σ of D is the closure of the set of double
points of f and CD is radical provided D is normal crossing in codimension 1. We call any
member of F1 whose pull-back under f generates CD an adjoint equation, and its zero locus
A an adjoint divisor. Set-theoretically, this implies that Σ = A ∩ D. Ragni Piene [Pie79, §3]
showed that an adjoint equation is given by the quotient

∂h/∂xj

∂(f1, . . . , f̂j , . . . , fn+1)/∂(x1, . . . , xn)
.

For example, if f(x1, x2) = (x1, x
2
2, x1x2) is the parameterisation of the Whitney umbrella, with

image D = {t23 − t21t2 = 0}, then this recipe gives t1 as adjoint equation. Figure 1 below shows
D +A in this example.

We show

Theorem 1.1. Let D be the image of a stable map germ (Cn, 0) → (Cn+1, 0) of corank 1, and
let A be an adjoint divisor for D. Then D +A is a free divisor.

However, we show by an example that D + A is not free when D is the image of a stable
germs of corank ≥ 2 (see Example 2.4.(3)). We recall the standard normal forms for stable map
germs of corank 1 in §2.

In §3, we prove the following analogous result for the discriminants of certain weighted homo-
geneous isolated function singularities. Recall that the discriminant has smooth normalization,
so that the preceding definitions apply.

Theorem 1.2. Let f : (Cn, 0) → (C, 0) be a weighted homogeneous polynomial of degree d with
isolated critical point and Milnor number µ. Let d1 ≥ d2 ≥ · · · ≥ dµ denote the degrees of

the members of a weighted homogeneous C-basis of the Jacobian algebra OCn,0/
⟨

∂f
∂x1

, . . . , ∂f
∂xn

⟩
.

Assume that d− d1 + 2di ̸= 0 ̸= d− di for i = 1, . . . , µ.
Let D be the discriminant in the base space of an Re-versal deformation of f and let A be an

adjoint divisor for D. Then D +A is a free divisor.

Theorem 1.2 evidently applies to the simple singularities, since for these d1 < d. It also applies
in many other cases. For example, it is easily checked that the hypotheses on the weights hold
for plane curve singularities of the form xp + yq with p and q coprime. We do not know whether
the conclusion continues to holds without the hypotheses on the weights.
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The adjoint A of the discriminant is closely related to the bifurcation set; this is discussed at
the end of Section 3.

We remark that an adjoint can be defined verbatim in case X is merely Gorenstein rather
than smooth. In [GMS12, §6] the techniques used here are applied to construct new free divisors
from certain Gorenstein varieties lying canonically over the discriminants of Coxeter groups.

In Theorem 1.2, D is already a free divisor as remarked above. In contrast, in Theorem 1.1,
D itself is not free: the argument with the Kodaira Spencer map referred to above shows that
Der(− logD) has depth n rather than n + 1. So by adding A we are making a non-free divisor
free. Something similar was already done by Jim Damon, for the same divisor D, in [Dam98,
Ex. 8.4]; Damon showed that after the addition of a certain divisor E (not an adjoint divisor for
D) with two irreducible components, D+E is the discriminant of a KV -versal deformation of a
non-linear section of another free divisor V . Freeness of D +E followed by his general theorem
on KV -versal discriminants. It seems that our divisor D + A does not arise as a discriminant
using Damon’s procedure.

A crucial step in the proofs of both of Theorems 1.1 and 1.2 is the following fact (see Propo-
sitions 2.8 and 3.4).

Proposition 1.3. In the situations of Theorems 1.1 and 1.2, F1 is cyclic as module over the
Lie algebra Der(− logD), and generated by an adjoint equation a ∈ OCn+1,0 for D.

Indeed, Theorem 1.2 follows almost trivially from this (see Proposition 3.9 below). We cannot
see how to deduce Theorem 1.1 in an equally transparent way. Unfortunately our proof of
Proposition 1.3 is combinatorial and not very revealing, something we hope to remedy in future
work.

From Proposition 1.3 it follows that the adjoint is unique up to isomorphism preserving D
(see Corollaries 2.9 and 3.8).

In the process of proving Theorem 1.2, we note an easy argument which shows that the
preimage of the adjoint divisor in the normalization of the discriminant is itself a free divisor.
This is our Theorem 3.2.

Motivated by Theorems 1.1 and 1.2, we describe in §4 a general procedure which constructs,
from a triple consisting of a free divisor D with k irreducible components and a free divisor in
(Ck, 0) containing the coordinate hyperplanes, a new free divisor containing D. By this means
we are able to construct a surprisingly large number of new examples of free divisors.

Notation. We shall denote by FR
ℓ (M) the ℓth Fitting ideal of the R-module M . For any

presentation

Rm A // Rk // M // 0

it is generated by all (k − ℓ)-minors of A and defines the locus where M requires more than ℓ
generators.

For any analytic space germ X, we denote by ΘX := HomOX (Ω1
X ,OX) the OX -module of vec-

tor fields on X. The OX -module of vector fields along an analytic map germ f : X → Y is defined
by Θ(f) := f∗ΘY . For X and Y smooth, we shall use the standard operators tf : ΘX → Θ(f)
and ωf : ΘY → Θ(f) of singularity theory defined by tf(ξ) := Tf ◦ ξ and ωf(η) = η ◦ f . For
background in singularity theory we suggest the survey paper [Wal81] of C.T.C. Wall.

Throughout the paper, all the hypersurfaces we consider will be assumed reduced, without
further mention.

Acknowledgments. We are grateful to Eleonore Faber for pointing out a gap in an earlier
version of Theorem 4.1, and to the referee for a number of valuable suggestions.
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2. Images of stable maps

Let f : X := (Cn, 0) → (Cn+1, 0) =: T be a finite and generically one-to-one map-germ with
image D. Note that X = D̄ is a normalization of D. By [MP89, Prop. 2.5], the OT -module OX

has a free resolution of the form

(2.1) 0 // Ok
T

λ // Ok
T

α // OX
// 0,

in which the matrix λ can be chosen symmetric (we shall recall the proof below). For 1 ≤ i, j ≤ k,
we denote bymi

j the minor obtained from λ by deleting the ith row and the jth column. The map
α sends the ith basis vector ei to gi ∈ OX , where g = g1, . . . , gk generates OX over OT . It will
be convenient to assume, after reordering the gi, that gk = 1. This leads to a free presentation

Ok
T

λk̂
// Ok−1

T
α // OX/OD

// 0,

where λk̂ is obtained from λ by deleting the kth row (corresponding to the generator gk = 1 of
OX). By a theorem of Buchsbaum and Eisenbud [BE77], this shows that

(2.2) F ′
1 := FOT

0 (OX/OD) = AnnOT (OX/OD) = CDOT .

As FOT

ℓ (OX) defines the locus where OX requires more than ℓ OT -generators, det(λ) is an
equation for D. By the hypothesis that f is generically one-to-one, it is a reduced equation for
D (see [MP89, Prop. 3.1]).

By Cramer’s rule one finds that in OX , gim
j
s = ±gjm

i
s for 1 ≤ i, j, s ≤ k (see [MP89,

Lem. 3.3]); invoking the symmetry of λ, this gives

(2.3) gim
k
j = ±gjm

k
i , 1 ≤ i, j ≤ k.

Combining this with the structure equations gigj =
∑k

ℓ=1 α
ℓ
i,jgℓ for OX as OT -algebra, one shows

that all of the mi
j lie in AnnOT

(OX/OD); then from (2.2), one deduces that (see [MP89, Thm.
3.4])

Lemma 2.1. F1 = F ′
1 =

⟨
mµ

j | j = 1, . . . , µ
⟩
is a determinantal ideal.

Since F1 therefore gives SingD a Cohen-Macaulay structure, this structure is reduced if
generically reduced. If f is stable, then at most points of SingD, D consists of two smooth
irreducible components meeting transversely, from which generic reducedness follows.

As gk = 1, it follows from (2.3) that mk
i = ±gim

k
k and hence

Lemma 2.2. F1OX =
⟨
mk

k

⟩
OX

is a principal ideal.

From this, we deduce

Lemma 2.3. Any adjoint divisor A for D is of the form

A = V
(
mk

k +

k−1∑
j=1

cjm
k
j

)
, cj ∈ OT .

Mather [Mat69] showed how to construct normal forms for stable map germs: one begins
with a germ f : (Ck, 0) → (Cℓ, 0) whose components lie in m2

Ck,0, and unfolds it by adding to

f terms of the form uigi, where the ui are unfolding parameters and the gi form a basis for
mCk,0Θ(f)/(tf(ΘCk,0) + mCℓ,0Θ(f)). Applying this construction to f(x) = (xk, 0), one obtains

the stable corank-1 map germ fk : (C2k−2, 0) → (C2k−1, 0) given by

(2.4) fk(u, v, x) := (u, v, xk + u1x
k−2 + · · ·+ uk−2x, v1x

k−1 + · · ·+ vk−1x) = (u, v, w),

where we abbreviate u := u1, . . . , uk−2, v := v1, . . . , vk−1, w := w1, w2.
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Example 2.4.
(1) When k = 2 in (2.4), f2(v, x) = (v, x2, vx) parameterizes the Whitney umbrella in (C3, 0),

whose equation is w2
2 − v2w1 = 0. With respect to the basis g = x, 1 of OS over OT , one has the

symmetric presentation matrix

λ =

(
v −w2

−w2 vw1

)
,

and this gives a = v as equation of an adjoint A (see Figure 1).

Figure 1. Whitney umbrella with adjoint

D

A

One calculates that Der(− logD) and Der(− log(D + A)) are generated, respectively, by the
vector fields whose coefficients are displayed as the columns of the matrices v v 0 w2

2w1 0 2w2 0
0 w2 v2 vw1

 and

 v v 0
2w1 0 2w2

2w2 w2 w2

 .

Note that here the basis of the free module Der(− log(D + A)) is included in a (minimal) list
of generators of Der(− logD). As we will see, this is always the case for the germs fk described
above.

(2) Let D0 be the image of the stable corank-2 map germ

(u1, u2, u3, u4, x, y) 7→ (u1, u2, u3, u4, x
2 + u1y, xy + u2x+ u3y, y

2 + u4x).

One calculates that D0 +A is not free.
(3) Every stable map germ of corank k > 2 is adjacent to the germ considered in the preceding

example. That is, there are points on the image D where D is isomorphic to the product of the
divisor D0 we have just considered in (2) and a smooth factor. It follows that that D + A also
is not free.

(4) If D is the image of an unstable corank 1 germ then in general D +A is not free.
(5) A multi-germ of immersions (Cn, {p1, . . . , pk}) → (Cn+1, 0) is stable if and only if it is

a normal crossing. There are strata of such normal crossing points, of different multiplicities,
on the image D of a stable map germ such as (2.4). It is easy to show that adding an ad-
joint divisor to D gives a free divisor at such normal crossing points. The normal crossing
divisor D = V (y1 · · · yk) ⊂ (Ck, 0) is normalized by separating its irreducible components. The

equation a :=
∑k

j=1 y1 · · · ŷj · · · yk restricts to y1 · · · ŷj · · · yk on the component V (yj), and so

generates the conductor there, and thus A := V (a) is an adjoint for D. The Euler vector field

χ =
∑k

j=1 yj∂yj
, together with the n− 1 vector fields δj := y2j∂yj

− y2j+1∂yj+1
, j = 1, . . . , k − 1,

all lie in Der(− log(D + A)). An application of Saito’s criterion yields freeness of D + A and
shows that χ, δ1, . . . , δk−1 form a basis for Der(− log(D +A)).
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Our proof of Theorem 1.1 is based on Saito’s criterion. By Mather’s construction, we are
concerned with the map f := fk of (2.4) where now n = 2k − 2. Using an explicit list of
generators of Der(− logD) constructed by Houston and Littlestone in [HL09], and testing them
on the equation mk

k of A, we find a collection of vector fields ξ1, . . . , ξ2k−1 in Der(− logD)
which are in Der(− logA) “to first order”, in the sense that for j = 1, . . . , 2k − 1, we have
ξj · mk

k ∈
⟨
mk

k

⟩
+ mTF1. Note that F1 is intrinsic to D, and therefore invariant under any

infinitesimal automorphism of D, so that necessarily ξj ·mk
k ∈ F1. In the process of testing, we

show that the map Der(− logD) → F1 sending ξ to ξ ·mk
k is surjective. Using this, we can then

adjust the ξj , without altering their linear part, so that now ξj ·mk
k ∈

⟨
mk

k

⟩
for j = 1, . . . , 2k−1.

As a consequence, the determinant of their Saito matrix must be divisible by the equation of
D + A. This determinant contains a distinguished monomial also present in the equation of
D + A, so the quotient of the determinant by the equation of D + A is a unit, the determinant
is a reduced equation for D +A, and D +A is a free divisor, by Saito’s criterion.

To begin this process, we need more detailed information about the matrix λ of (2.1). We
use a trick from [MP89, §2]: embed X as X × {0} into X × (C, 0) := S, and let the additional
variable in S be denoted by t. Extend f : X → T to a map F : S → T by adding t to the last
component of f . Applying this procedure to the map f = fk of (2.4), gives

F (u, v, x, t) := (u, v, xk + u1x
k−2 + · · ·+ uk−2x, v1x

k−1 + · · ·+ vk−1x+ t) = (u, v, w).(2.5)

It is clear that OS/mTOS is generated over C by the classes of 1, x, . . . , xk−1, from which it
follows by [Gun74, Cor. 2, p. 137] that OS is a free OT -module on the basis

(2.6) gi := xk−i, i = 1, . . . , k.

Consider the diagram

(2.7) 0 // OS
t // OS

// OX
// 0

0 // Ok
T [t]gg

//

φg

OO

Ok
T

//

φg

OO

OX
// 0

in which φg is the OT -isomorphism sending (c1, . . . , ck) ∈ Ok
T to

∑k
j=1 cjgj ∈ OS , and where now

[t]gg denotes the matrix of multiplication by t with respect to the basis g of OS as OT -module.
The lower row is thus a presentation of OX as OT -module. This can be improved by a change
of basis on the source of [t]gg, as follows.

Since OS is Gorenstein, HomOT
(OS ,OT ) ∼= OS as OS-module. Let Φ be an OS-generator of

HomOT (OS ,OT ). It induces a symmetric perfect pairing

⟨·, ·⟩ : OS × OS → OT , ⟨a, b⟩ = Φ(ab)

with respect to which multiplication by t is self-adjoint. We refer to this pairing as the Gorenstein
pairing. Now choose a basis ǧ = ǧ1, . . . , ǧk for OS over OT dual to g with respect to ⟨·, ·⟩; that
is, such that ⟨gi, ǧj⟩ = δi,j . Then the (i, j)th entry of [t]ǧg equals ⟨tǧj , ǧi⟩, and so redefining

(2.8) λ = (λi
j) = (λ1, . . . , λk) := [t]ǧg

yields a symmetric presentation matrix.
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Lemma 2.5. With an appropriate choice of generator Φ of HomOT (OS ,OT ), we have

(2.9) λ ≡



−v1 −v2 −v3 · · · −vk−1 w2

−v2 −v3 . .
.

w2 0

−v3 . .
.

. .
. ...

... . .
.

. .
. ...

−vk−1 w2 . .
. ...

w2 0 · · · · · · 0


mod ⟨u,w1⟩.

Proof. Let b ∈ OS map to the socle of the 0-dimensional Gorenstein ring OS/mTOS . This means
that

mSb ⊂ mTOS .

Thus, for any a ∈ mS and Ψ ∈ HomOT (OS ,OT ), we have

(aΨ)(b) = Ψ(ab) = Ψ(
∑
i

cibi) =
∑
i

ciΨ(bi) ∈ mT

where ci ∈ mT and bi ∈ OS . In other words, any Φ ∈ mS HomOT
(OS ,OT ) maps b to mT .

Conversely, for any Φ ∈ HomOT
(OS ,OT ) with Φ(b) ∈ O∗

T , its class Φ̄ in

HomOT
(OS ,OT )/mS HomOT

(OS ,OT )

is non-zero. As HomOT (OS ,OT ) ∼= OS , this latter space is 1-dimensional over C which shows
that Φ̄ is a generator. By Nakayama’s lemma, Φ is then an OS-basis of HomOT

(OS ,OT ). In
particular, we may take as Φ(h), for h ∈ OS , the coefficient of b = xk−1 in the representation of
h in the basis (2.6); then Φ(b) = 1.

In the following, we implicitly compute modulo ⟨u,w1⟩. Using the relation

(2.10) w1 = xk +

k−2∑
i=1

uix
k−1−i

from (2.5) we compute

ǧ1 = 1, ǧj =

w1 −
k−2∑

i=j−1

uix
k−1−i

/xk+1−j = xj−1 +

j−2∑
i=1

uix
j−i−2, j = 2, . . . , k.

Note that

(2.11) ǧ2 = xǧ1, ǧj = xǧj−1 + uj−2ǧ1, j = 3, . . . , k.

Now let us calculate the columns λ1, . . . , λk of the matrix (2.8). Using ǧ1 = 1 and the relation

t+
∑k−1

i=1 vigi = w2 = w2gk from (2.5), we first compute

λ1 = [tǧ1]g = (⟨t, ǧj⟩)j =

(⟨
w2gk −

k−1∑
i=1

vigi, ǧj

⟩)
j

= (−v1, . . . ,−vk−1, w2)
t.

By (2.11), each of the remaining columns λj is obtained by multiplying by x the vector repre-
sented by its predecessor, and, for j ≥ 3, adding uj−2λ1. Thus,

(2.12) λ2 = [x]ggλ1, λj = [x]ggλj−1 + uj−2λ1, j = 3, . . . , k.
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Using (2.10) again, observe that

(2.13) [x]gg =



w1 1 0 · · · 0

0 0 1
. . .

...

−u1

...
. . .

. . . 0
...

...
. . . 1

−uk−2 0 · · · · · · 0


≡



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
...

...
. . . 1

0 0 · · · · · · 0


mod ⟨u,w1⟩.

The result follows. □

Corollary 2.6. The reduced equation h of the image D of the map fk of (2.4) contains the

monomial wk
2 with coefficient ±1. The minor mk

k contains the monomial wk−2
2 v1 with coefficient

±1.

Proof. The determinant of the matrix λ of (2.9) is a reduced equation for the image of f (see
[MP89, Prop. 3.1]). Both statements then follow from Lemma 2.5. □

Example 2.7. For the stable map-germs

f3(u1, v1, v2, x) = (u1, v1, v2, x
3 + u1x, v1x

2 + v2x)

and

f4(u1, u2, v1, v2, v3, x) = (u1, u2, v1, v2, v3, x
4 + u1x

2 + u2x, v1x
3 + v2x

2 + v3x)

of (2.4), the matrix λ is equal to−v1 −v2 w2

−v2 w2 + u1v1 −v1w1

w2 −v1w1 v2w1 − u1w2


and to 

−v1 −v2 −v3 w2

−v2 u1v1 − v3 w2 + u2v1 −v1w1

−v3 w2 + u2v1 u2v2 − u1v3 − v1w2 −v2w1 + u1w2

w2 −v1w2 −v2w1 + u1w2 −v3w1 + u2w2


respectively.

Proof of Theorem 1.1. In [HL09, Thms. 3.1-3.3], Houston and Littlestone give an explicit list of
generators for Der(− logD). Their proof that these generators lie in Der(− logD) simply ex-
hibits, for each member ξ of the list, a lift η ∈ ΘX in the sense that tf(η) = ωf(ξ). The Houston-
Littlestone list consists of the Euler field ξe and three families ξij , 1 ≤ i ≤ 3, 1 ≤ j ≤ k − 1.

Denote by ξ̄ij the linear part of ξij . After dividing by 1, k, k, k and k2 respectively, these linear
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parts are

ξ̄e =

k−2∑
i=1

(i+ 1)ui∂ui +
k−1∑
i=1

ivi∂vi + kw1∂w1 + kw2∂w2 ,

ξ̄1j = −w2∂vj +
∑
i<j

vi−j+k∂vi , 1 ≤ j ≤ k − 1,

χ̄ = −ξ̄21 = −
k−2∑
i=1

(i+ 1)ui∂ui +
k−1∑
i=1

(k − i)vi∂vi + kw1∂w1 ,

ξ̄2j =
∑

i<k−j

(i+ j)ui+j−1∂ui −
∑

i<k−j+1

(k − i− j + 1)vi+j−1∂vi , 1 < j ≤ k − 1,

ξ̄3j = −(1− δj,1)w2∂uk−j
+
∑

i<k−j

vi+j∂ui + δj,1w2∂w1 , 1 ≤ j ≤ k − 1.

Also let

σ̄ = (ξ̄e + χ̄)/k =
k−1∑
i=1

vi∂vi + w2∂w2 .

We now test the above vector fields for tangency to A = V (mk
k). Vector fields in Der(− logD)

preserve F1, so for each ξ ∈ Der(− logD) there exist cj ∈ OT , unique modulo mT , such that

ξ(mk
k) =

∑
j

cjm
k
j .

We determine their value modulo mT with the help of distinguished monomials. Let ι be the
sign of the order-reversing permutation of 1, . . . , k − 1. Then, by Lemma 2.5, for 1 < j ≤ k, the
monomial wk−2

2 vk−j+1 appears in the polynomial expansion of mk
j with coefficient (−1)j−1ι but

does not appear in the polynomial expansion of mk
ℓ for ℓ ̸= j. Similarly, the monomial wk−1

2 has
coefficient ι in the polynomial expansion of mk

1 but does not appear in that of mk
j for j ≥ 2.

Let λ′
1, . . . , λ

′
k denote the columns of the matrix λ of (2.9) with its last row deleted. For any

δ ∈ ΘT , we have

(2.14) δ(mk
k) =

k−1∑
r=1

det(λ′
1, . . . , δ(λ

′
r), . . . , λ

′
k−1).

For δ = ξ2j , the only distinguished monomial to appear in any of the summands in (2.14) is

vjw
k−2
2 , which appears in the summand for r = 1, with coefficient (k − j)(−1)kι. Thus

(2.15) ξ2j (m
k
k) = (−1)j(k − j)mk

k−j+1 mod mTF1, for 1 ≤ j ≤ k − 1.

Similarly we find

ξ1j (λ
′
r) =

{
λ′
k−j+r if r ≤ j,

0 otherwise.

Using (2.14) with δ = ξ1j , it follows that

(2.16) ξ1j (m
k
i ) = (−1)k−j+1mk

i+j−k mod mTF1, for 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1.

Note that (2.15), and (2.16) with i = k, imply

Proposition 2.8. The map

(2.17) dmk
k : Der(− logD) → F1

sending ξ ∈ Der(− logD) to ξ(mk
k) is an OT -linear surjection. □
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Combining (2.15) and (2.16) with i = k, we construct vector fields

ηj = (j − 1)ξ1j − ξ2k−j+1, 2 ≤ j ≤ k − 1

with linear part

η̄j ≡ (1− j)w2∂vj +
∑
i<j

(2j − i− 1)vk+i−j∂vi mod ⟨∂u, ∂w1⟩,

which lie in Der(− log(D +A)) to first order, since ηj(m
k
k) ∈ mTF1.

Both χ̄ and σ̄ are semi-simple, and so by consideration of the distinguished monomials, χ and
σ must therefore lie in Der(− logA) to first order. The vector fields ξ3j lie in Der(− logA) to first

order, since it is clear by consideration of the distinguished monomials that ξ3j (m
k
k) ∈ mTF1.

Thus we have 2k − 1 vector fields η2, . . . , ηk−1, χ, σ, ξ
3
1 , . . . , ξ

3
k−1 in Der(− logD) which are

also in Der(− logA) to first order. By Proposition 2.8, we can modify these by the addition of
suitable linear combinations, with coefficients in mT , of the Houston–Littlestone generators of
Der(− logD), so that they are indeed in Der(− logA) and therefore in Der(− log(D +A)). The

determinant of the Saito matrix of the modified vector fields η̃2, . . . , η̃k−1, χ̃, σ̃, ξ̃
3
1 , . . . , ξ̃

3
k−1 must

be a multiple αhmk
k of the equation of D + A. We now show that α is a unit, from which it

follows, by Saito’s criterion, that D +A is a free divisor.
The modification of the vector fields does not affect the lowest order terms in the determi-

nant of their Saito matrix, and these are the same as the lowest order terms in the determi-
nant of the Saito matrix of their linear parts. With the rows representing the coefficients of
∂u1 , . . . , ∂uk−2

, ∂w1 , ∂v1 , . . . , ∂vk−1
, ∂w2 in this order, this matrix is of the form(

∗ B̄1

B̄2 0

)
,

with

B̄1 =



v2 v3 v4 · · · vk−1 −w2

v3 v4 . .
.

−w2 0

v4 . .
.

. .
. ...

... . .
.

. .
.

vk−1 −w2 . .
. ...

w2 0 · · · · · · 0


and

B̄2 =



2vk−1 4vk−2 6vk−3 · · · · · · (2k − 4)v2 (k − 1)v1 v1
−w2 3vk−1 5vk−2 · · · · · · (2k − 5)v3 (k − 2)v2 v2

0 −2w2 4vk−1
. . .

...
...

...
... 0 −3w2

. . .
. . .

...
...

...
... 0

. . .
. . . kvk−2 3vk−3 vk−3

...
...

...
. . .

. . . (k − 1)vk−1 2vk−2 vk−2

0 0 0 · · · 0 −(k − 2)w2 vk−1 vk−1

0 0 0 · · · · · · 0 0 w2


In its determinant we find the monomial w2k−2

2 v1 with coefficient ±(k − 1)!. By Corollary 2.6,
this monomial is present in the equation of D + A. This proves that α is a unit and completes
the proof that D + V (mk

k) is a free divisor.
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The following consequence of Proposition 2.8 is needed to prove that Theorem 1.1 holds for
any adjoint divisor A of D, and not just for A = V (mk

k).

Corollary 2.9. The adjoint divisor A is unique up to isomorphism preserving D.

Proof. Let A0 := V (mk
k). By Lemma 2.3, any adjoint divisor A1 must have an equation of the

form m1 := mk
k +

∑k−1
i=1 cim

k
i . Consider the family of divisors

(2.18) A := V (m) ⊂ T × (C, 1), m := mk
k + s

k−1∑
j=1

cjm
k
j ,

where s is a coordinate on (C, 1). We claim that there exists a vector field

Ξ ∈ DerT×(C,1)/(C,1)(− log(D × (C, 1)))
such that

(2.19) Ξ(m) = ∂s(m).

Then the vector field ∂s − Ξ is tangent to D × (C, 1), and its integral flow trivializes the family
(2.18). Passing to representatives of germs and scaling the cj , the latter holds true in an open
neighborhood of any point of the interval {0} × [0, 1] ⊂ Cn+1 × C. A finite number of such
neighborhoods cover this interval and it follows that A0 and A1 are isomorphic by an isomorphism
preserving D.

To construct Ξ we first show, using Proposition 2.8, that

(2.20) dm1 : Der(− logD) → F1

is surjective. By (2.17), there are vector fields δ1, . . . , δk ∈ Der(− logD), homogeneous with
respect to the grading determined by the vector field χ, such that δj(m

k
k) = mk

j for j = 1, . . . , k.

Pick αℓ
i,j ∈ OT such that

δi(m
k
j ) =

k∑
ℓ=1

αℓ
i,jm

k
ℓ , 1 ≤ i, j ≤ k,

and set Lj := (αℓ
i,j)1≤ℓ,i≤k. The constant parts Lj(0) are uniquely defined and Lk is the identity

matrix by choice of the δj . For j < k, with respect to the grading determined by χ, we have

deg(mk
k) < deg(mk

k−1) ≤ · · · ≤ deg(mk
1)

1.

This gives

deg(δi(m
k
j )) > deg(δi(m

k
k)) = deg(mk

i ) ≥ deg(mk
i+1) ≥ · · · ≥ deg(mk

k),

and hence
δi(m

k
j ) ∈

⟨
mk

1 , . . . ,m
k
i−1

⟩
+mTF1.

The constant matrices Lj(0), j < k, are therefore strictly upper triangular, and the constant

part Lk +
∑k−1

j=1 cj(0)Lj(0) of the matrix of dm1 is invertible. Thus,

dm1(Der(− logD)) +mTF1 = F1,

and (2.20) follows by Nakayama’s Lemma. As m ≡ m1 mod mT×(C,1), (2.20) gives

dm(DerT×(C,1)/(C,1)(− log(D × (C, 1))) +mT×(C,1)OT×(C,1)F1 ⊃ OT×(C,1)F1

and Nakayama’s Lemma yields

(2.21) dm(DerT×(C,1)/(C,1)(− log(D × (C, 1))) ⊃ OT×(C,1)F1.

1All the inequalities here are in fact strict, but we want to use the argument again later in a context where
we assume only what is written here (see Corollary 3.8).
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Then any preimage Ξ of ∂s(m) ∈ F1 under dm solves (2.19). □

The proof of Theorem 1.1 is now complete. □

3. Discriminants of hypersurface singularities

Let f : X := (Cn, 0) → (C, 0) =: T be weighted homogeneous of degree d (with respect to
positive weights) and have an isolated critical point at 0. Let χ0 be an Euler vector field for
f , with χ0(f) = d · f . Denote by Jf := ⟨∂x1

(f), . . . , ∂xn
(f)⟩ the Jacobian ideal of f . Pick a

weighted homogeneous g = g1, . . . , gµ ∈ OX with decreasing degrees di := deg(gi) inducing a
C-basis of the Jacobian algebra

Mf := OX/Jf .

We may take gµ := 1 and g1 := H0 to be the Hessian determinant H0 of f , which generates the
socle of Mf . Then

(3.1) F (x, u) := f(x) + g1(x)u1 + · · ·+ gµ(x)uµ

defines an Re-versal unfolding

F × πS : Y := X × S → T × S

of f , with base space S := (Cµ, 0), where

π = πS : Y = X × S → S

is the natural projection. Setting deg(ui) = wi := d−di makes F weighted homogeneous of degree
deg(F ) = d = deg(f). We denote by χ the Euler vector field χ0 + δ1 where δ1 =

∑µ
i=1 wiui∂ui

.
Let Σ ⊂ Y be the relative critical locus of F , defined by the relative Jacobian ideal

J rel
F =

⟨
∂x1(F ), . . . , ∂xµ(F )

⟩
,

and set Σ0 = Σ ∩ V (F ). Then OΣ is a finite free OS-module with basis g. As Σ is smooth
and hence Gorenstein, HomOS

(OΣ,OS) ∼= OΣ as OΣ-modules, and a basis element Φ defines a
symmetric perfect pairing

⟨·, ·⟩ : OΣ ⊗OS OΣ → OS , ⟨g, h⟩ := Φ(gh),

which we refer to as the Gorenstein pairing. As in §2 (see the proof of Lemma 2.5), a generator
Φ may be defined by projection to the socle of the special fiber: We let Φ(h) be the coefficient
of the Hessian g1 in the expression of h in the basis g. By

⟨·, ·⟩0 : Mf ⊗C Mf → C

we denote the induced Gorenstein pairing on OΣ/mSOΣ = OX/Jf = Mf .
Let ǧ = ǧ1, . . . , ǧµ denote the dual basis of g with respect to the Gorenstein pairing, and

denote by ďi the degree of ǧi. We have di + ďi = d1, so ďi = dµ+i−1 (recall that we have ordered
the gi by descending degree).

The discriminant D = πS(Σ
0) ⊂ S was shown by Kyoji Saito (see [Sai80a]) to be a free

divisor. The following argument proves this, and shows also that it is possible to choose a basis
for Der(− logD) whose Saito matrix is symmetric.

Theorem 3.1. There is a free resolution of OΣ0 as OS-module

0 // Oµ
S

Λ // ΘS
dF // OΣ0 // 0

in which Λ is symmetric, and is the Saito matrix of a basis of Der(− logD).
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Proof. As in (2.7), there is a commutative diagram with exact rows

0 // OΣ
F // OΣ

// OΣ0 // 0

0 // Oµ
S

∼=

""F
FF

FF
FF

F

φǧ ∼=

OO

Λ // ΘS

φg ∼=

OO

dF

<<zzzzzzzz

Der(− logD)
- 


<<xxxxxxxxx

where Λ = (λi
j)1≤i,j≤µ is the matrix of multiplication by F with respect to bases ǧ in the source

and g in the target. As in (2.8), symmetry of Λ follows from self-adjointness of multiplication
by F with respect to the Gorenstein pairing. Because of the form of F , the map φg : ΘS → OΣ

sending η =
∑

j αj∂uj to
∑

j αjgj coincides with evaluation of dF on a(ny) lift η̃ ∈ ΘY of η;

different lifts of the same vector field differ by a sum
∑

j αj∂xj ∈ ΘY/S , and the evaluation of
dF on such a sum vanishes on Σ. The kernel of the composite ΘS → OΣ0 consists of vector
fields on S which lift to vector fields on Y which are tangent to V (F ), since dF (η̃) is divisible
by F if and only if η̃ ∈ Der(− log V (F )). It is well known (see e.g. [Loo84, Lem. 6.14]) that the
set of vector fields on S which lift to vector fields tangent to V (F ) is equal to Der(− logD). □

Denote by mi
j the (µ − 1)-minor of Λ obtained by deleting the ith row and the jth column.

Then Lemmas 2.1, 2.2 and 2.3 of §2 remain valid in this new context. That is,

(3.2) F1 := FOS
1 (OΣ0) =

⟨
mµ

j | j = 1, . . . , µ
⟩

OS
, F1OΣ0 =

⟨
mµ

µ

⟩
OΣ0

,

and the adjoints of D are divisors of the form

A = V
(
mµ

µ +

µ−1∑
j=1

cjm
µ
j

)
.

Although it is not part of the main thrust of our paper, the following result seems to be new,
and is easily proved. It assumes that D is the discriminant of an Re-versal deformation, but
does not require any assumption of weighted homogeneity. We denote by H the relative Hessian
determinant of the deformation (3.1).

Theorem 3.2. Let A be any adjoint divisor for D. Then

Ã := π−1(A) ∩ Σ0

is a free divisor in Σ0 containing V (H) ∩ Σ0, with reduced defining equation (mµ
µ ◦ π)/H.

Proof. By Corollary 3.8 below, we may assume that A = V (mµ
µ), and hence Ã = V (mµ

µ ◦π)∩Σ0.

First, it is necessary to show that H2 divides mµ
µ ◦ π and that mµ

µ/H is reduced. Since Σ0

is smooth, it is enough to check this at generic points of V (H). This reduces to checking
that it holds at an A2-point. The miniversal deformation of an A2-singularity is given by
G(x, v1, v2) = x3 + v1x + v2. In this case, mµ

µ is, up to multiplication by a unit, simply the

coefficient of ∂v1 in the Euler vector field, namely v1, and v1 = −3x2 on Σ0. The Hessian H is
equal to 6x, so H2 does divide mµ

µ ◦ π, and moreover the quotient (mµ
µ ◦ π)/H is reduced.

As Σ0 is the normalization of D (see [Loo84, Thm. 4.7]), vector fields tangent to D lift to

vector fields tangent to Σ0 (see [Sei66]). Let δ̃1, . . . , δ̃µ be the lifts to Σ0 of the symmetric basis

δ1, . . . , δµ of Der(− logD) constructed in Theorem 3.1. We will show that δ̃1, . . . , δ̃µ−1 form a

basis for Der(− log Ã).
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To see this, pick coordinates for Σ0, and denote by (δ̃1, . . . , δ̃µ) the matrix whose jth column

consists of the coefficients of the vector field δ̃j with respect to these coordinates. Similarly,
denote by (δ1, . . . , δµ) the matrix whose jth column consists of the coefficients of δj with respect
to the coordinates u1, . . . , uµ. We abbreviate πΣ0 := π|Σ0 and πΣ := π|Σ. There is a matrix
equality

(3.3) [TπΣ0 ] · (δ̃1, . . . , δ̃µ) = (δ1, . . . , δµ) ◦ π,

where [TπΣ0 ] is the Jacobian matrix of π with respect to the chosen coordinates. Let πµ be
obtained from π by omitting the µth component, and let (δ1, . . . , δµ)

µ
µ denote the submatrix of

(δ1, . . . , δµ) obtained by omitting its µth row and column. Then (3.3) gives

[Tπµ
Σ0 ] · (δ̃1, . . . , δ̃µ−1) = (δ1, . . . , δµ)

µ
µ ◦ π,

so that

(3.4) det[Tπµ
Σ0 ] det(δ̃1, . . . , δ̃µ−1) = mµ

µ ◦ π.

We will now compute det[Tπµ
Σ0 ] in terms of F . Because gµ = 1, uµ does not appear in the

equations of Σ, so ∂uµ ∈ T(x,u)Σ for all (x, u) ∈ Σ. It follows that at any point of Σ0, T(x,u)Σ

has a basis consisting of a basis of T(x,u)Σ
0 followed by the vector ∂uµ . With respect to such a

basis, the matrix of [TπΣ] takes the form

[TπΣ] =

[
Tπµ

Σ0 ∗
0 1

]
from which it follows that

(3.5) det[Tπµ
Σ0 ] = det[TπΣ].

In order to express the latter in terms of F , we compare two representations of the zero-
dimensional Gorenstein ring

(3.6) OΣ/⟨u1, . . . , uµ⟩ = OΣ/π
∗mS = OY /⟨∂x1(F ), . . . , ∂xn(F ), u1, . . . , uµ⟩

as a quotient of a regular C-algebra. In both cases, by [SS75, (4.7) Bsp.], the socle is generated
by the Jacobian determinant of the generators of the respective defining ideal. The first rep-
resentation then shows that the socle is generated by det[TπΣ], the second one, that it is also
generated by the (relative) Hessian H = det(∂2F/∂x2) of F . Hence, up to multiplication by a
unit, we obtain

(3.7) det[TπΣ] = H

in OΣ/⟨u1, . . . , uµ⟩. It is easy to see that the non-immersive locus of πΣ is the vanishing set of
H. This, together with (3.7), shows that det[TπΣ0 ] = H. Now combining (3.4), (3.5) and (3.7),

det(δ̃1, . . . , δ̃µ−1) = (mµ
µ ◦ π)/H,

and so is a reduced defining equation for Ã = V (mµ
µ ◦ π). Finally, each δ̃j is tangent to

Ã = (πΣ0)−1(A) at its smooth points, since δj is necessarily tangent to the non-normal locus
A ∩D of D. The theorem now follows by Saito’s criterion. □

Remark 3.3. Computation with examples appears to show that closure

Cv := Ã \ V (H)

is also a free divisor.
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We now go on to show first that the divisor D + V (mµ
µ) is free and then (see Corollary 3.8)

that all adjoints are isomorphic. Just as in §2, our proof makes use of the representation of
Der(− logD) on F1, and relies on the surjectivity of dmµ

µ : Der(− logD) → F1.

Proposition 3.4. Assume that d− d1 + 2di ̸= 0 ̸= d− di for i = 1, . . . , µ. Then

dmµ
µ(Der(− logD)) = F1.

Inclusion of the left hand side in the right is a consequence of the Der(− logD)-invariance of
F1. To show equality, it is enough to show that it holds modulo mSF1. This will cover most of
the remainder of this section.

Denote by Λ̄ = (λ̄i
j)1≤i,j≤µ the linear part of Λ, and let δ̄i =

∑
j λ̄

i
jui∂ui be the linear part of

δi.

Theorem 3.5. The entries of Λ are given by λi
j =

∑µ
k=1 ⟨ǧiǧj , gk⟩wkuk. In particular,

λ̄i
j =

µ∑
k=1

⟨ǧiǧj , gk⟩0wkuk.

Proof. Since χ0(F ) ∈ J rel
F , we have

F = χ(F ) ≡ δ1(F ) =
∑
k

wkukgk mod J rel
F ,

and hence

λi
j = ⟨ǧi, F ǧj⟩ = ⟨ǧiǧj , F ⟩ =

⟨
ǧiǧj ,

∑
k

wkukgk

⟩
=
∑
k

⟨ǧiǧj , gk⟩wkuk.

□

We call a homogeneous basis g of Mf self-dual if

(3.8) ǧi = gµ+1−i.

Lemma 3.6. Mf admits self-dual bases.

Proof. Denote by Wj ⊂ Mf the subspace of degree-dj elements. The space W1 is 1-dimensional
generated by the Hessian of f . Therefore Wj and Wk are orthogonal unless dj+dk = d1, in which
case ⟨·, ·⟩0 induces a non-degenerate pairing Wj⊗CWk → C. If j ̸= k, one can choose the basis of
Wj to be the reverse dual basis of a basis of Wk. Otherwise, Wj = Wk and (since quadratic forms
are diagonalizable) there is a basis of Wj for which the matrix of ⟨·, ·⟩0 is diagonal. Self-duality
on Wj is then achieved by a coordinate change with matrix

1 0 · · · · · · 0 1

0
. . . . .

.
0

... 1 1
...

... i −i
...

0 . .
. . . . 0

i 0 · · · · · · 0 −i


or



1 0 · · · · · · 0 1

0
. . . . .

.
0

... 1 1
...

1
... i −i

...

0 . .
. . . . 0

i 0 · · · · · · 0 −i


where i =

√
−1, for dimC(Wj) even or odd, respectively. A self-dual basis of Mf is then obtained

by joining the bases of the Wj constructed above. □
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Let m̄i
j be the (µ− 1)-jet of mi

j , that is, the corresponding minor of Λ̄.

Lemma 3.7. Suppose g is an OS-basis for OΣ whose restriction to Mf is self-dual, and that
d ̸= di ̸= 0. Then the following equalities hold true:

(a) mSF1 = F1∩mµ
SOS and F1 is minimally generated by mµ

1 , . . . ,m
µ
µ. In particular, m̄µ

i ≡ mµ
i

mod mSF1 for i = 1, . . . , µ.
(b) δ̄i(m̄

µ
µ) = ±(d− d1 + 2di)m̄

µ
µ+1−i for i = 2, . . . , µ.

(c) δ1(m
µ
µ) ≡ mµ

µ mod C∗.

Proof. As wi = d − di ̸= 0 by hypothesis, we may introduce new variables vi = wiui for
i = 1, . . . , µ. Under the self-duality hypothesis, Theorem 3.5 implies that the matrix Λ̄ has the
form

(3.9) Λ̄ =



v1 v2 · · · · · · vµ−1 vµ
v2 ⋆ · · · ⋆ vµ 0
...

... . .
.

. .
.

. .
. ...

... ⋆ . .
.

. .
. ...

vµ−1 vµ . .
. ...

vµ 0 · · · · · · · · · 0


where ⋆ entries do not involve the variable vµ. For the first row and column, this is clear. For
the remaining entries, we note that, by Theorem 3.5, vµ appears in λ̄i

j if and only if

0 ̸= ⟨ǧiǧj , gµ⟩0 = ⟨ǧi, ǧj⟩0.
By the self-duality assumption (3.8), this is equivalent to i+j = µ+1, in which case ⟨ǧiǧj , gµ⟩ = 1
and λ̄i

µ−i+1 = vµ.
As in the proof of Theorem 1.1, it is convenient to use ι to denote the sign of the order-

reversing permutation of 1, . . . , µ−1. From (3.9) it follows that m̄µ
µ+1−i involves a distinguished

monomial viv
µ−2
µ , with coefficient (−1)µ−i−1ι for i = 1, . . . , µ− 1 and ι for i = µ; this monomial

does not appear in any other minor m̄µ
µ+1−j for i ̸= j. This implies (a).

In order to prove (b), assume, for simplicity of notation, that Λ and δ are linear, and fix
i ∈ {2, . . . , µ − 1}; the case i = µ is similar. We know that δi(m

µ
µ) is a linear combination of

mµ
1 , . . . ,m

µ
µ. We will show that

(3.10) δi(m
µ
µ) = (−1)i−1(w1 − 2wµ−i+1)m

µ
µ−i+1

by computing that the coefficient ci,j of the distinguished monomial vjv
µ−2
µ in δi(m

µ
µ) satisfies

(3.11) ci,j = (−1)µ−2ι(w1 − 2wµ−i+1)δi,j .

The self-duality assumption (3.8) implies that d1 − dℓ = ďℓ = dµ−ℓ+1. Using wℓ = d − dℓ, this
gives

w1 − 2wµ−i+1 = d− d1 + 2dµ−i+1 − 2d = d− d1 + 2d1 − 2di − 2d = −(d− d1 + 2di).

So (b) will follow from (3.10).
By linearity of δi, the only monomials in the expansion ofmµ

µ that could conceivably contribute
to a non-zero ci,j are of the following three forms:

(3.12) vµ−1
µ , vjv

µ−2
µ , vjvkv

µ−3
µ .

The first monomial does not figure in the expansion of mµ
µ. Monomials of the other two types

do appear. The second type of monomial in (3.12) must satisfy j = 1 and arises as the product

(3.13) (−1)µ−2ιv1v
µ−2
µ = (−1)µ−2ιλ1

1λ
2
µ−1λ

3
µ−2 · · ·λ

µ−1
2 .
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Monomials of the third type in (3.12) must satisfy k = µ− j + 1. Each such monomial arises in
the expansion of mµ

µ in two ways, which coincide when j = µ− j + 1:

(−1)µ−3ιvjvkv
µ−3
µ = (−1)µ−3ιλ1

jλ
2
µ−1 · · ·λ

µ−j
j+1λ

µ−j+1
1 λµ−j+2

j−1 · · ·λµ−1
2(3.14)

(−1)µ−3ιvjvkv
µ−3
µ = (−1)µ−3ιλ1

µ−j+1λ
2
µ−1 · · ·λ

j−1
µ−j+2λ

j
1λ

j+1
µ−j · · ·λ

µ−1
2 .(3.15)

In terms of the coordinates v1, . . . , vµ, δi contains monomials

wiui∂u1 = w1vi∂v1 ,(3.16)

wµuµ∂uµ−i+1 = wµ−i+1vµ∂vµ−i+1 .(3.17)

Now (3.16) applied to (3.13) contributes w1(−1)µ−2ι to ci,i, (3.17) applied to one or two copies
of (3.14) for i = j contributes 2(−1)µ−3ιwµ−i+1 to ci,i in both cases. There are no contributions
to the coefficient of any other distinguished monomial.

We have proved (3.10), from which (b) follows; (c) is clear, since δ1 is the Euler vector field. □

By Nakayama’s lemma, Proposition 3.4 now follows immediately from (3.2) and Lemma 3.7.

The next result, closely analogous to Corollary 2.9, follows from Proposition 3.4 by the same
argument by which Corollary 2.9 is deduced from Proposition 2.8.

Corollary 3.8. Assume the hypothesis of Proposition 3.4. Then any two adjoint divisors of D
are isomorphic by an isomorphism preserving D. □

Proposition 3.9. Let D = V (h) and A = V (m) be divisors in S, and suppose that D is a free
divisor. Let F be the OS-ideal dm(Der(− logD)), and suppose that m ∈ F . Then the following
two statements are equivalent:

(1) depthOS
F = µ− 1.

(2) D +A is a free divisor.

Proof. Apply the depth lemma (see [BH93, Prop. 1.2.9]) to the two short exact sequences:

0 // ⟨m⟩ // F // F/⟨m⟩ // 0

0 // Der(− log(D +A)) // Der(− logD)
dm // F/⟨m⟩ // 0 □

Proof of Theorem 1.2. By Corollary 3.8, we may assume that A = V (mµ
µ). Recall that

dmµ
µ(Der(− logD)) = F1

by Proposition 3.4 and hence depthOS
F1 = µ − 1 by the Hilbert–Burch Theorem (see [BH93,

Thm. 1.4.17]). So Proposition 3.9 with m = mµ
µ and F = F1 yields the claim. □

Remark 3.10. We remark that the very simple deduction of Theorem 1.2 from Propositions 3.4
and 3.9 does not have a straightforward analogue by which Theorem 1.1 can be deduced from
Propositions 2.8 and 3.9. Firstly, the image D of a stable map-germ f : (Cn, 0) → (Cn+1, 0) is
not free: Der(− logD) has depth n and not n + 1. Secondly, there can be no way of adapting
the argument to deal with this difference without some other input, since when f is the stable
germ of corank 2 of Example 2, the corresponding map Der(− logD) → F1 is surjective, and
F1 has depth n, but even so Der(− log(D +A)) is not free.

We conclude this section with a description of the relation between the adjoint divisor ofD and
the bifurcation set of the deformation. For u ∈ S, we set Xu := π−1

S (u) and define fu : Xu → T
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by fu(x) := F (x, u). We consider S′ := (Cµ−1, 0) with coordinates u′ = u1, . . . , uµ−1, and we
denote by

(3.18) ρ : S → S′ u 7→ u′,

the natural projection forgetting the last coordinate. Recall that the bifurcation set is the set
B ⊂ S′ of parameter values u′ such that fu′ := f(u′,0) has fewer than µ distinct critical values.
The coefficient uµ of gµ = 1 is set to 0 since it has no bearing on the number of critical values. The
bifurcation set consists of two parts: the level bifurcation set Bv consisting of parameter values
u′ for which fu′ has distinct critical points with the same critical value, and the local bifurcation
set Bℓ where fu′ has a degenerate critical point. H. Terao, in [Ter83], and J.W. Bruce in [Bru85]
proved that B is a free divisor and gave algorithms for constructing a basis for Der(− logB).
The free divisor B is of course singular in codimension 1. The topological double points (points
at which B is reducible) are of four generic types:

• Type 1: fu′ has two distinct degenerate critical points, x1 and x2.
• Type 2: fu′ has two distinct pairs of critical points, x1, x2 and x3, x4, such that

fu′(x1) = fu′(x2) and fu′(x3) = fu′(x4).

• Type 3: fu′ has a pair of critical points x1 and x2 with the same critical value, and also a
degenerate critical point x3.

• Type 4: fu′ has three critical points x1, x2 and x3 with the same critical value.
In the neighborhood of a double point of type 1, 2 or 3, B is a normal crossing of two smooth
sheets. In the neighborhood of a double point of type 4, B is isomorphic to a product

B0 × (Cµ−2, 0),

where B0 = V (uv(u− v)) ⊂ (C2, 0).

Proposition 3.11. For any adjoint divisor A for D, (3.18) induces a surjection

(3.19) ρ : D ∩A ↠ B.

Proof. A point u ∈ S lies in D ∩ A if the sum of the lengths of the Jacobian algebras of fu
at points x ∈ f−1

u (0) is greater than 1. The sum may be greater than 1 because for some x
the dimension of the Jacobian algebra is greater than 1 – in which case fu has a degenerate
critical point at x – or because fu has two or more critical points with critical value 0. In either
case, it is clear that ρ(u) ∈ B. If u′ ∈ B, then fu′ has either a degenerate critical point or a
repeated critical value (or both). In both, cases let v be the corresponding critical value. Then
(u′,−v) ∈ D ∩A, proving surjectivity. □

Remark 3.12. The projection (3.19) is a partial normalization, in the sense that generically,
topological double points of u′ ∈ B of types 1, 2 and 3 are separated. Indeed, in each such
case fu′ has two critical points with different critical values, and hence with different preimages
under ρ. However, a general point u′ of type 4 has only one preimage, (u′,−f(u′,0)(xi)), in D∩A.
Generically, at such a point D is a normal crossing of three smooth divisors, and D ∩ A is the
union of their pairwise intersections. Thus B0 is improved to a curve isomorphic to the union of
three coordinate axes in 3-space.

Finally, our free divisors D + A and Ã of Theorems 1.2 and 3.2, and the conjecturally free
divisor Cv of Remark 3.3, fit into the following commutative diagram, in which A is any adjoint
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divisor forD, and the simple and double underlinings indicate conjecturally free and free divisors.

V (H) ∩ Σ0

% �

))

ρ◦π|

����

Cv
� � //

ρ◦π|

����

Ã

π

��

� � // Σ0

π

��

D ∩A

ρ

����

� � // D
� � // D +A

Bℓ
� v 55Bv

� � // B

4. Pull-back of free divisors

In this section, we describe a procedure for constructing new free divisors from old by a
pull-back construction. It is motivated by Example 2.4.(5).

Theorem 4.1. Suppose that D =
∪k

i=1 Di ⊂ (Cn, 0) =: X is a germ of a free divisor. Let
f : X → Y := (Ck, 0) be the map whose ith component fi ∈ OX , for i = 1, . . . , k, is a reduced
equation for Di. Suppose that, for j = 1, . . . , k, there exist vector fields εj ∈ ΘX such that

(4.1) dfi(εj) = δi,j · fi.
Let N := V (y1 · · · yk) ⊂ Y be the normal crossing divisor, so that D = f−1(N). Let E ⊂ Y
be a divisor such that N + E is free. Then provided that no component of f−1(E) lies in D,
f−1(N + E) = D + f−1(E) is a free divisor.

Proof. The vector fields ε1, . . . , εk can be incorporated into a basis ε1, . . . , εn for Der(− logD)
such that (4.1) holds for j = 1, . . . , n and hence

(4.2) tf(εj) =
k∑

i=1

dfi(εj)∂yi =

{
ωf(yj∂yj ), if j ≤ k,

0, otherwise.

Any Saito matrix of N + E can be written in the form SN+E = SN ·A, where
SN = diag(y1, . . . , yk)

is the standard Saito matrix of N and A = (ai,j) ∈ Ok×k
Y . Then, by Saito’s criterion, h := detA

and g := y1 · · · ynh are reduced equations for E and N+E respectively. For j = 1, . . . k, consider

the vector fields vj :=
∑k

i=1 ai,jyi∂yi ∈ Der(− log(N +E)) whose coefficients are the columns of
SN+E and let

ṽj :=

k∑
i=1

(ai,j ◦ f)εi ∈ ΘX .

By (4.2), we have tf(ṽj) = ωf(vj); by construction of the vj , it follows that

d(g ◦ f)(ṽj) = (dg(vj)) ◦ f ∈ (g ◦ f)OX ,

so that ṽj ∈ Der(− log f−1(N + E)), and moreover εj ∈ Der(− log f−1(N + E)) for j > k.
Let SD be the Saito matrix of D, whose columns are the coefficients of the vector fields

ε1, . . . , εn. The matrix of coefficients of the vector fields ṽ1, . . . , ṽk, εk+1, . . . , εn is equal to

SD ·
(
A ◦ f 0
0 In−k

)
and thus its determinant det(SD)·(h◦f) defines D+f−1(E) = f−1(N+E). By Saito’s criterion,
this shows that the latter is a free divisor, provided
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(1) h ◦ f is reduced and
(2) h ◦ f has no irreducible factor in common with f1 · · · fk.

Now h◦f is reduced where f is a submersion. So provided no component of f−1(E) is contained in
the critical set Σf of f , h◦f is reduced. In fact Σf = DSing. To see this, consider the “logarithmic
Jacobian matrix” (εi(fj))1≤i≤n,1≤j≤k of f . The determinant of the first k columns is equal to
f1 · · · fk; thus f1 · · · fk is in the Jacobian ideal of f , so Σf ⊂ D. Thus DSing = D ∩ Σf = Σf .
This shows that condition (2) above implies condition (1). □

Example 4.2. Let D := V (x1 · · ·xn) ⊂ (Cn, 0) be the normal crossing divisor, define

f : (Cn, 0) → (C2, 0)

by f(x1, . . . , xn) = (x1 · · ·xk, xk+1 · · ·xn), and let g ∈ OC2,0 be any germ not divisible by either
of the coordinates. Take N := V (y1y2) and E := V (g(y1, y2)). By Theorem 4.1 it follows that
V (x1 · · ·xng(x1 · · ·xk, xk+1 · · ·xn)) is a free divisor. The condition that no component of f−1(E)
should lie in D is guaranteed by the requirement that neither y1 nor y2 should divide g(y1, y2).

The existence hypothesis (4.1) in the theorem is not fulfilled for every reducible free divisor.
In the graded case, the vector fields εj must have degree zero. If D is the discriminant of a versal
deformation of a weighted homogeneous isolated hypersurface singularity meeting the hypotheses
of Theorem 1.2, and A is an adjoint divisor, then D + A is free but the only vector fields of
weight zero in Der(− logD) are multiples of the Euler field. Thus, hypothesis (4.1) cannot hold.

However there is an interesting class, namely linear free divisors, for which this requirement
always holds. We recall from [GMNRS09] that a free divisor D in the n-dimensional vector
space V is said to be linear if Der(− logD) has a basis consisting of vector fields of weight 0.
The linear span Der(− logD)0 of the basic fields is an n-dimensional Lie algebra. It is naturally
identified with the Lie algebra of the algebraic subgroup ι : GD ↪→ GL(V ) consisting of the
identity component of the set of automorphisms preserving D. It follows that (V,GD, ι) is a
prehomogeneous vector space (see [SK77]) with discriminant D.

Let D ⊂ V be a linear free divisor and D =
∪k

i=1 Di a decomposition into irreducible
components. The corresponding defining equations f1, . . . , fk are polynomial relative invari-
ants of (V,GD, ι) with associated characters χ1, . . . , χk; that is, for g ∈ GD and x ∈ V ,
fj(gx) = χj(g)fj(x). These characters are multiplicatively independent, by [SK77, §4, proof
of Prop. 5]. Let gD denote the Lie algebra of GD. By differentiating the character map
χ = (χ1, . . . , χk) : G → (C∗)k we obtain an epimorphism of Lie algebras dχ : gD → Ck. This
yields a decomposition

gD = ker dχ⊕
k⊕

i=1

Cεi, dχi(εj) = δi,j .

For δ ∈ gD, the equality fi(gx) = χi(g)fi(x) differentiates to δ(fi) = dχi(δ) · fi, which implies
(4.1). We have proved

Proposition 4.3. Any germ of a linear free divisor D satisfies the existence hypothesis (4.1) of
Theorem 4.1. □

Example 4.4. Let σi(y) be the ith symmetric function of y = y1, . . . , yk and set N := V (σk(y))
and E := V (σk−1(y)). As seen in Example 2.4.(5), the divisor N +E is free. So by Theorem 4.1
and Proposition 4.3, for any germ D of a linear free divisor with distinct irreducible components
Di = V (fi), the divisor germ V (σk(f1, . . . , fk)σk−1(f1, . . . , fk)) is also free. No component of
V (σk−1(f1, . . . , fk)) can lie in D, since were this the case, some fi would divide σk−1(f1, . . . , fk)

and therefore would divide f1 · · · f̂i · · · fk.
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If each of the Di is normal, then in fact f−1(E) is an adjoint divisor of the normalization
of D. As the singular locus of any free divisor has pure codimension 1, the singular locus of D

is equal to its non-normal locus. The ring of functions on the normalization D̄ =
⨿k

i=1 Di has
presentation matrix diag(f1, . . . , fk). Thus V (σk−1 ◦ f) is an adjoint divisor of D.

There is another class of divisors that fits naturally into the setup of Theorem 4.1, namely
that of hyperplane arrangements.

Proposition 4.5. Given the hypothesis (4.1), any germ N+E of a free hyperplane arrangement
automatically satisfies the hypothesis on f−1(E) in Theorem 4.1.

Proof. By assumption, N = V (y1, . . . , yk) and E =
∪m

i=k+1 Hi where Hi = V (ℓi) for some linear
equation ℓi(y) =

∑
j αi,jyj for i = k + 1, . . . ,m. We need to show that no component of any of

the ℓi ◦ f is divisible by any fj . Suppose to the contrary that ℓi ◦ f = g · ft. For s ̸= t, εs applied
to this equation gives αi,sfs = εs(g) · ft. Since ft cannot divide fs as D is reduced, it follows
that αi,s = 0 for any s ̸= t, and thus ℓi = αi,tyt. This is absurd since A is supposed reduced. □

Combining Propositions 4.3 and 4.5 proves

Corollary 4.6. Let A =
∪m

i=1 Hi ⊂ (Ck, 0) be the germ of a free hyperplane arrangement
containing the normal crossing divisor {y1 · · · yk = 0}, and let D ⊂ (Cn, 0) be the germ of a linear
free divisor whose irreducible components have equations f1, . . . , fk. If f : (Cn, 0) → (Ck, 0) is
defined by f(x) = (f1(x), . . . , fk(x)), then f−1(A) is a free divisor.

Note that the corollary applies to any essential free arrangement, once suitable coordinates
are chosen.
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