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ON A SINGULAR VARIETY ASSOCIATED TO A POLYNOMIAL MAPPING

NGUYEN THI BICH THUY, ANNA VALETTE, AND GUILLAUME VALETTE

Abstract. In the paper, “Geometry of polynomial mapping at infinity via intersection ho-

mology”, the second and third authors associated to a given polynomial mapping F : C2 → C2

with nonvanishing Jacobian a variety whose homology or intersection homology describes the

geometry of singularities at infinity of the mapping. We generalize that result.

1. INTRODUCTION

In 1939, O. H. Keller [9] stated the famous Jacobian conjecture: any polynomial mapping

F : Cn → Cn with nowhere vanishing Jacobian is a polynomial automorphism. The problem

remains open today even for dimension 2. We call the smallest set SF such that the mapping

F : X\F−1(SF )→ Y \SF is proper, the asymptotic set of F . The Jacobian conjecture reduces to

show that the asymptotic set of a complex polynomial mapping with nonzero constant Jacobian

is empty. So the set of points at which a polynomial mapping fails to be proper plays an

important role.

The second and third authors gave in [14] a new approach to study the Jacobian conjecture

in the case of dimension 2: they constructed a real pseudomanifold denoted NF ⊂ Rν , where

ν > 2n, associated to a given polynomial mapping F : Cn → Cn, such that the singular part of

the variety NF is contained in (SF ×K0(F ))×{0Rν−2n} where K0(F ) is the set of critical values

of F . In the case of dimension 2, the homology or intersection homology of NF describes the

geometry of the singularities at infinity of the mapping F .

Our aim is to improve this result in the general case of dimension n > 2 and compute the

intersection homology of the associated pseudomanifold NF . Let F̂i be the leading forms of the

components Fi of the polynomial mapping F = (F1, . . . , Fn) : Cn → Cn. We show (Theorem

4.5) that if the polynomial mapping F : Cn → Cn has nowhere vanishing Jacobian and if

rank(DF̂i)i=1,...,n > n− 2, then the condition of properness of F is equivalent to the condition

of vanishing homology or intersection homology of NF . Moreover, it is indeed more precise

to compute intersection homology rather than homology. In order to compute the intersection

homology of the variety NF , we show that it admits a stratification which is locally topologically

trivial along the strata. The main feature of intersection homology is to satisfy Poincaré duality

that is more interesting in the case where the stratification has no stratum of odd real dimension.

We show that the variety NF admits a Whitney stratification with only even dimensional strata.

It is well known that Whitney stratification are locally topologically trivial along the strata.
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APO, no 2010-80.

This article was written in Kraków, Poland, when the first author was invited in Kraków at

the Polish Academy of Science. It is our pleasure to thank this Institute for its kind hospitality

and very good working conditions.

It is our pleasure to thank Jean-Paul Brasselet for his interest and encouragements.

2. PRELIMINARIES AND BASIC DEFINITION

In this section we set-up our framework. All the considered sets in this article are semi-

algebraic.

2.1. Notations and conventions. Given a topological space X, singular simplices of X will

be semi-algebraic continuous mappings σ : Ti → X, where Ti is the standard i-simplex in Ri+1.

Given a subset X of Rn we denote by Ci(X) the group of i-dimensional singular chains (linear

combinations of singular simplices with coefficients in R); if c is an element of Ci(X), we denote

by |c| its support. By Reg(X) and Sing(X) we denote respectively the regular and singular

locus of the set X. Given X ⊂ Rn, X will stand for the topological closure of X. Given a point

x ∈ Rn and α > 0, we write B(x, α) for the ball of radius α centered at x and S(x, α) for the

corresponding sphere, boundary of B(x, α).

2.2. Intersection homology. We briefly recall the definition of intersection homology; for

details, we refer to the fundamental work of M. Goresky and R. MacPherson [3] (see also [2]).

Definition 2.1. Let X be a m-dimensional semi-algebraic set. A semi-algebraic stratifica-

tion of X is the data of a finite semi-algebraic filtration

(2.2) X = Xm ⊃ Xm−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

such that for every i, the set Si = Xi \ Xi−1 is either empty or a topological manifold of

dimension i. A connected component of Si is called a stratum of X.

Definition 2.3 ([16]). One says that the Whitney (b) condition is realized for a stratification

if for each pair of strata (S, S′) and for any y ∈ S one has: Let {xn} be a sequence of points in

S′ with limit y and let {yn} be a sequence of points in S tending to y, assume that the sequence

of tangent spaces {TxnS′} admits a limit T for n tending to +∞ (in a suitable Grassmanian

manifold) and that the sequence of directions xnyn admits a limit λ for n tending to +∞ (in

the corresponding projective manifold), then λ ∈ T .

We denote by cL the open cone on the space L, the cone on the empty set being a point.

Observe that if L is a stratified set then cL is stratified by the cones over the strata of L and a

0-dimensional stratum (the vertex of the cone).
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Definition 2.4. A stratification of X is said to be locally topologically trivial if for every

x ∈ Xi \ Xi−1, i ≥ 0, there is an open neighborhood Ux of x in X, a stratified set L and a

semi-algebraic homeomorphism

h : Ux → (0; 1)i × cL,

such that h maps the strata of Ux (induced stratification) onto the strata of (0; 1)i×cL (product

stratification).

We will use the following definition of a semi-algebraic pseudomanifold :

Definition 2.5. A (semi-algebraic) pseudomanifold in Rn is a subset X ⊂ Rn whose

singular locus is of codimension at least 2 in X and whose regular locus is dense in X.

A stratified pseudomanifold (of dimension m) is the data of an m-dimensional pseudo-

manifold X together with a semi-algebraic filtration:

X = Xm ⊃ Xm−1 ⊃ Xm−2 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅,

which constitutes a locally topologically trivial stratification of X.

Definition 2.6. A stratified pseudomanifold with boundary is a semi-algebraic couple

(X, ∂X) together with a semi-algebraic filtration

X = Xm ⊃ Xm−1 ⊃ Xm−2 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅,

such that:

(1) X \ ∂X is an m-dimensional stratified pseudomanifold (with the filtration Xj \ ∂X),

(2) ∂X is a stratified pseudomanifold (with the filtration X ′j := Xj+1 ∩ ∂X),

(3) ∂X has a stratified collared neighborhood: there exist a neighborhood U of ∂X in

X and a semi-algebraic homeomorphism φ : ∂X × [0, 1]→ U such that

φ(X ′j−1 × [0, 1]) = U ∩Xj and φ(∂X × {0}) = ∂X.

Definition 2.7. A perversity is an (m − 1)-uple of integers p̄ = (p2, p3, . . . , pm) such that

p2 = 0 and pk+1 ∈ {pk, pk + 1}.
Traditionally we denote the zero perversity by 0 = (0, . . . , 0), the maximal perversity by

t = (0, 1, . . . ,m − 2), and the middle perversities by m = (0, 0, 1, 1, . . . , [m−2
2 ]) (lower middle)

and n = (0, 1, 1, 2, 2, . . . , [m−1
2 ]) (upper middle). We say that the perversities p and q are

complementary if p+ q = t.

Given a stratified pseudomanifold X, we say that a semi-algebraic subset Y ⊂ X is (p̄, i)-

allowable if dim(Y ∩Xm−k) ≤ i− k + pk for all k ≥ 2.

In particular, a subset Y ⊂ X is (t, i)-allowable if dim(Y ∩ Sing(X)) < i− 1.

Define ICpi (X) to be the R-vector subspace of Ci(X) consisting of those chains ξ such that

|ξ| is (p, i)-allowable and |∂ξ| is (p, i− 1)-allowable.

Definition 2.8. The ith intersection homology group with perversity p, denoted by

IHp
i (X), is the ith homology group of the chain complex ICp∗ (X).
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Goresky and MacPherson proved that these groups are independent of the choice of the

stratification and are finitely generated [3, 4].

Theorem 2.9 (Goresky, MacPherson [3]). For any orientable compact stratified semi-algebraic

m-dimensional pseudomanifold X, generalized Poincaré duality holds:

(2.9) IHp
k (X) ' IHq

m−k(X),

where p and q are complementary perversities.

In the non-compact case the above isomorphism holds for Borel-Moore homology:

(2.9) IHp
k (X) ' IHq

m−k,BM (X),

where IH∗,BM denotes the intersection homology with respect to Borel-Moore chains [4, 2]. A

relative version is also true in the case where X has boundary.

Proposition 2.10 (Topological invariance, [3, 4]). Let X be a locally compact stratified pseudo-

manifold and p a perversity, then the intersection homology groups IHp
∗ (X) and IHp

∗,BM (X) do

not depend on the stratification of X.

2.3. L∞ cohomology. Let M ⊂ Rn be a smooth submanifold.

Definition 2.11. We say that a differential form ω on M is L∞ if there exists a constant K

such that for any x ∈M :

|ω(x)| ≤ K.

We denote by Ωj∞(M) the cochain complex constituted by all the j-forms ω such that ω and dω

are both L∞. The cohomology groups of this cochain complex are called the L∞-cohomology

groups of M and will be denoted by H∗∞(M).

The third author showed that the L∞ cohomology of the differential forms defined on the

regular part of a pseudomanifold X coincides with the intersection cohomology of X in the

maximal perversity ([15], Theorem 1.2.2):

Theorem 2.12. Let X be a compact subanalytic pseudomanifold (possibly with boundary). Then,

for any j:

Hj
∞(Reg(X)) ' IH t̄

j(X).

Furthermore, the isomorphism is induced by the natural mapping provided by integration on

allowable simplices.
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2.4. The Jelonek set. Let F : Cn → Cn be a polynomial mapping. We denote by SF the set

of points at which the mapping F is not proper, i.e.,

SF = {y ∈ Cn such that ∃{xk} ⊂ Cn, |xk| → ∞, F (xk)→ y},

and call it the asymptotic variety or Jelonek set of F . The geometry of this set was studied

by Jelonek in a series of papers [6, 7, 8]. Jelonek obtained a nice description of this set and gave

an upper bound for its degree. For the details and applications of these results we refer to the

works of Jelonek. In our paper, we will need the following powerful theorems.

Theorem 2.13 ([6]). If F : Cn → Cn is a generically finite polynomial mapping, then SF is

either an (n− 1) pure dimensional C-uniruled algebraic variety or the empty set.

Theorem 2.14 ([6]). If F : X → Y is a dominant polynomial map of smooth affine varieties

of the same dimension then SF is either empty or is a hypersurface.

Here, by a C-uniruled variety X we mean that through any point of X passes a rational

complex curve included in X. In other words, X is C-uniruled if for all x ∈ X there exists a

non-constant polynomial mapping ϕx : C→ X such that ϕx(0) = x.

In the real case, the Jelonek set is an R-uniruled semi-algebraic set but, if nonempty, its

dimension can be any integer between 1 and (n− 1) [8].

3. THE VARIETY NF

The variety NF was constructed by the second and third authors in [14]. Let us recall briefly

this construction.

3.1. Construction of the variety NF ([14]). We will consider polynomial mappings F : Cn →
Cn as real ones F : R2n → R2n. By Sing(F ) we mean the singular locus of F that is the zero

set of its Jacobian determinant and we denote by K0(F ) the set of critical values of F , i.e., the

set F (Sing(F )).

We denote by ρ the Euclidean Riemannian metric in R2n. We can pull it back in a natural

way:

F ∗ρx(u, v) := ρ(dxF (u), dxF (v)).

Define the Riemannian manifold MF := (R2n \ Sing(F );F ∗ρ) and observe that the mapping F

induces a local isometry near any point of MF .

Lemma 3.1 ([14]). There exists a finite covering of MF by open semi-algebraic subsets such

that on every element of this covering, the mapping F induces a diffeomorphism onto its image.

Proposition 3.2 ([14]). Let F : Cn → Cn be a polynomial mapping. There exists a real semi-

algebraic pseudomanifold NF ⊂ Rν , for some ν = 2n+ p, where p > 0 such that

Sing(NF ) ⊂ (SF ∪K0(F ))× {0Rp},

and there exists a semi-algebraic bi-Lipschitz mapping

hF : MF → NF \ (SF ∪K0(F ))× {0Rp}
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where NF \ (SF ∪K0(F ))× {0Rp} is equipped with the Riemannian metric induced by Rν .

The variety NF is constructed as follows: let F : Cn → Cn be a polynomial mapping. Thanks

to Lemma 3.1, there exists a covering {U1, . . . , Up} of MF = R2n \ Sing(F ) by open semi-

algebraic subsets (in R2n) such that on every element of this covering, the mapping F induces a

diffeomorphism onto its image. We may find some semi-algebraic closed subsets Vi ⊂ Ui (in MF )

which cover MF as well. Thanks to Mostowski’s Separation Lemma (see Separation Lemma in

[10], page 246), for each i, i = 1, . . . , p, there exists a Nash function ψi : MF → R, such that ψi

is positive on Vi and negative on MF \ Ui. We define

hF := (F,ψ1, . . . , ψp) and NF := hF (MF ).

In order to prove hF is bi-Lipschitz, we do as follows: choose x ∈ MF , then there exists Uj

such that x ∈ Uj and the mapping F|Uj : Uj → R2n is a diffeomorphism onto its image. Define,

for y ∈ F (Uj), the following functions:

(3.3) ψ̃i(y) := ψi ◦ (F|Uj )
−1(y),

for i = 1, . . . , p, and

(3.4) ψ̂(y) := (y, ψ̃1(y), . . . , ψ̃p(y)).

We then have the formula

(3.5) hF (x) = (F (x), ψ̃1(F (x)), . . . , ψ̃p(F (x))) = ψ̂(F (x)).

As the map F : (Uj , F
∗ρ)→ F (Uj) is bi-Lipschitz, it is enough to show that ψ̂ : F (Uj)→ R2n+p

is bi-Lipschitz. This amounts to prove that ψ̃i has bounded derivatives for any i = 1, . . . , p. In

order to prove this, we chose the functions ψi sufficiently small, by using  Lojasiewicz inequality

in the following form:

Proposition 3.6. [1] Let A ⊂ Rn be a closed semi-algebraic set and f : A → R a continuous

semi-algebraic function. There exist c ∈ R, c ≥ 0 and q ∈ N such that for any x ∈ A we have

|f(x)| ≤ c(1 + |x|2)q.

In fact, we can choose the Nash functions ψi sufficiently small by multiplying ψi by a huge

power of 1
1+|x|2 which is a Nash function (see Proposition 2.3 in [14]).

Thanks to  Lojasiewicz inequality, we also can choose the functions ψi such that they tend to

zero at infinity and near Sing(F ). This is the reason why the singular part of NF is contained

in (SF ∪K0(F ))× {0Rp}.
Moreover, the following diagram is commutative:

(3.7) MF

F

""

hF // NF

πF
��

R2n
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where πF is the canonical projection on the first 2n coordinates, and hF is bijective onto its

image NF \ ((SF ∪K0(F ))× {0Rp}).

Remark that the set NF is not unique, it depends on the covering of MF that we choose and

on the choice of the Nash function ψi.

We see that in the complex case, even in the case C2, the real dimension of the variety NF is

greater than 3, so it is difficult to draw the variety NF in this case. The natural question arises

if the variety NF exists in the real case. The answer is yes, but we note that in this case, the

variety NF is not necessarily a pseudomanifold, because in the real case, the real dimension of

the Jelonek set of a polynomial mapping F : Rn → Rn can be n− 1.

Proposition 3.8 ([14], [11]). Let F : Rn → Rn be a polynomial mapping. There exist

a) a real semi-algebraic variety NF ⊂ Rν , for some ν = n+ p where p > 0, such that

Sing(NF ) ⊂ (SF ∪K0(F ))× {0Rp} ⊂ Rn × Rp,

b) a semi-algebraic bi-Lipschitz mapping

hF : MF → NF \ (SF ∪K0(F ))× {0Rp}

where NF \ (SF ∪K0(F ))× {0Rp} is equipped with the Riemannian metric induced by Rν .

In order to understand better the variety NF , we give here an example in the real case.

3.2. Example.

Example 3.9. [11] Let F : R2
(x,y) → R2

(α,β) be the polynomial mapping defined by

F (x, y) = (x, x2y(y + 2)).

Let us construct the variety NF in this case. By an easy computation, we find:

Sing(F ) = {(x, y) ∈ R2
(x,y) : x = 0 or y = −1},

K0(F ) = {(α, β) ∈ R2
(α,β) : β = −α2},

SF = {(0, β) ∈ R2
(α,β) : β ≥ 0}.

We see that R2 is divided into four open subsets Ui by Sing(F ) (see the Figure 1a). The

mapping F is a diffeomorphism on each Ui, for i = 1, . . . , 4. Observe that Ui is closed in MF

so that we can chose Vi = Ui for i = 1, . . . , 4 (see section 3.1). There exist Nash functions

ψi : MF → R such that each ψi is positive on Ui and negative on Uj if j 6= i. Since NF is the

closure of hF (MF ) where hF = (F,ψ1, . . . , ψ4), then NF has 4 parts (NF )1, . . . , (NF )4 where

(NF )i is the closure of hF (Ui) for i = 1, . . . , 4.

Again, an easy computation shows:

F (U1) = F (U2) = {(α, β) ∈ R2
(α,β) : α > 0, β > −α2},

F (U3) = F (U4) = {(α, β) ∈ R2
(α,β) : α < 0, β > −α2}.

Each (NF )i is F (Ui) embedded in R(α,β) × R4 but (NF )i does not lie in the plane R(α,β)

anymore, it is “lifted” in R(α,β) ×R4. However, the part contained in K0(F )× SF still remains
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in the plane R(α,β) since the functions ψi tend to zero at infinity and near Sing(F ) (see the

Figure 1b).

Now we want to know how the parts (NF )i are glued together. Using diagram (3.7), for any

point a = (α, β) ∈ R2 \K0(F ) the cardinal of π−1
F (a) \ ((K0(F ) ∪ SF ) × {0R4}) is equal to the

cardinal of F−1(a) since hF is bijective. Consider now the equation

F (x, y) =
(
x, x2y2 + 2x2y

)
= (α, β)

where β 6= −α2. We have

(3.10) α2y2 + 2α2y − β = 0.

As the reduced discriminant is ∆′ = α4 + α2β = α2(α2 + β), then

1) if β < −α2, the equation (3.10) does not have any solution,

2) if β > −α2, the equation (3.10) has two solutions.

Then (NF )1 and (NF )2 are glued together along (K0(F )∪SF )×{0R4}. Similarly, (NF )3 and

(NF )4 are glued together along (K0(F ) ∪ SF )× {0R4} (see the Figure 1c).

1a 1b 1c

Figure 1. The variety NF .

3.3. Homology and intersection homology of NF .

Lemma 3.11 ([14]). Let F : C2 → C2 be a polynomial mapping. There exists a natural strati-

fication of the variety NF , by even (real) dimension strata, which is locally topologically trivial

along the strata.

In fact, the stratification of the variety NF is showed in [14] to be

NF ⊃ (SF ∪K0(F ))× {0Rp} ⊃ (Sing(SF ∪K0(F )) ∪B)× {0Rp} ⊃ ∅,

where B = SF |F−1(SF )
.
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Theorem 3.12 ([14]). Let F : C2 → C2 be a polynomial mapping with nowhere vanishing

Jacobian. The following conditions are equivalent:

(1) F is non proper,

(2) H2(NF ) 6= 0,

(3) IHp
2 (NF ) 6= 0 for any perversity p,

(4) IHp
2 (NF ) 6= 0 for some perversity p.

We notice that, for a given polynomial map F : C2 → C2, the fact that the homology group

H2(NF ) vanishes or not only depends on the behavior of F at infinity.

4. Results

The following theorem generalizes Lemma 3.11 and shows existence of suitable stratifications

of the set SF in the case of a polynomial mapping F : Cn → Cn.

Theorem 4.1. Let F : Cn → Cn be a generically finite polynomial mapping with nowhere

vanishing Jacobian. There exists a filtration of NF :

NF = V2n ⊃ V2n−1 ⊃ V2n−2 ⊃ · · · ⊃ V1 ⊃ V0 ⊃ V−1 = ∅

such that :

1) for any i < n, V2i+1 = V2i,

2) the corresponding stratification satisfies the Whitney (b) condition.

Proof. We have the following elements

+ Thanks to Sard Theorem, we have dimC Sing(SF ) ≤ n− 2, i.e., dimR Sing(SF ) ≤ 2n− 4.

+ Let M2n−2 = F−1(SF )∩MF . The mapping F restricted to M2n−2 is dominant. Thanks to

Jelonek’s Theorem (Theorem 2.14), we have dimC SF|M2n−2
= n−2 (since dimCM2n−2 = n−1).

Thus, we obtain dimC SF|M2n−2
= 2n− 4.

+ Thanks to Whitney’s Theorem (Theorem 19.2, Lemma 19.3, [16]), the set B2n−2 of points

x ∈ SF at which the Whitney (b) condition fails is contained in a complex algebraic variety of

complex dimension smaller than n− 1, so dimRB2n−2 ≤ 2n− 4.

We will define a filtration (W) of R2n by algebraic varieties and compatible with SF :

(W) : W2n = R2n ⊃W2n−1 ⊃W2n−2 = SF ⊃ · · · ⊃W2k+1 ⊃W2k ⊃ · · · ⊃W1 ⊃W0 ⊃ ∅

by decreasing induction on k. Assume that W2k has been constructed. If dimRW2k < 2k then

we put

W2k−1 = W2k−2 = W2k

otherwise we denote M2k = F−1(W2k) ∩MF and W ′2k = W2k \ (Sing(W2k) ∪ SF|M2k
). We put

(4.2) W2k−1 = W2k−2 = Sing(W2k) ∪ SF|M2k
∪A2k,

where A2k is the smallest algebraic set which contains the set:

B2k =

{
x ∈W ′2k :

if x ∈Wh with h > 2k then

the Whitney (b) condition fails at x for the pair (W ′2k,Wh)

}
.
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Now, consider the filtration (V) of NF

(V) : NF = V2n ⊃ V2n−1 ⊃ V2n−2 ⊃ · · · ⊃ V2k+1 ⊃ V2k ⊃ · · · ⊃ V1 ⊃ V0 ⊃ ∅

where Vi = π−1
F (Wi) and πF is the canonical projection from NF to R2n, on the first 2n coordi-

nates (see diagram (3.7)).

Let S′2i = W2i \W2i−2. We claim that F|F−1(S′2i)
is proper. This is obvious if S′2i is empty.

If S′2i is not empty, suppose that there exists a sequence {xl} in F−1(S′2i) such that F (xl) goes

to a point a in S′2i. We have to show that the sequence {xl} does not go to infinity. Since

S′2i = W2i \W2i−2, where W2i−2 = Sing(W2i)∪SF|M2i−2
∪A2i, we have a /∈ SF|M2i−2

. If xl tends

to infinity then a ∈ SF|F−1(S′
2i

)
, which is a contradiction.

Let X be a connected component of π−1
F (Z), where Z ⊆W2i\W2i−2. We have X ⊆ V2i\V2i−2.

We claim that either X ⊆ Z × {0Rp} or X ∩ (SF × {0Rp}) = ∅. Assume that there exist x′ ∈ X
but x′ /∈ Z × {0Rp} and x′′ ∈ X ∩ (SF × {0Rp}). Then we have x′′ = (x, 0Rp), where x ∈ SF .

There exists a curve γ(t) = (γ1(t), γ2(t)) ⊆ X where γ1(t) ⊆ Rn and γ2(t) ⊆ Rp, such that

γ(0) = x′ and γ(1) = x′′. Let us call u = γ(t0) the first point at which γ meets SF × {0Rp}.
Thus, we have γ2(t) 6= 0 whenever t < t0 and h−1

F (γ(t)) is in M2i, for t < t0. Moreover,

F (h−1
F (γ(t))) = πF (γ(t)) tends to πF (u) and h−1

F (γ(t)) tends to infinity as t tends to t0. Hence,

πF (u) ∈ SF |M2i
⊂W2i−2, so u is in V2i−2, contradicting u ∈ X ⊂ V2i \ V2i−2.

Let us show that S2i := V2i\V2i−2 is a smooth manifold, for all i. Because F|F−1(S′2i)
is proper,

the restriction of πF to π−1
F (S′2i) \ (SF × {0Rp}) = hF (F−1(S′2i)) is proper. Consequently, πF is

a covering map on S2i. This implies that S2i is a smooth manifold.

Observe that in the case where X ∩ (SF × {0Rp}) is nonempty then it is included in W2i−2 ×
{0Rp}, if dimX = 2i, since every point of X ∩ (SF × {0Rp}) is a point of SF |M2i

⊆ W2i−2. As

πF is a covering map on NF \ (SF × {0Rp}), this implies that S′2i × {0Rp} is open in π−1
F (S′2i).

Let us prove that the filtration (V) defines a Whitney stratification: at first, we prove that

the stratification (W) is a Whitney stratification. If the stratum S′2i = W2i \W2i−2 is not empty,

then by (4.2), we have

S′2i = W2i \W2i−2 ⊂W2i \A2i ⊂W2i \B2i.

This shows that the stratification (W) satisfies Whitney conditions.

We denote

ΣW := {X ′ : X ′ is a connected component of W2i \W2i−2, 0 ≤ i ≤ n},

ΣV := {X : X is a connected component of V2i \ V2i−2, 0 ≤ i ≤ n}.
We now prove that if X ∈ ΣV then πF (X) ∈ ΣW . If X ⊆ SF × {0Rp} then πF|X is the identity

and thus X belongs to ΣW . Otherwise, X ⊆ NF \ (SF × {0Rp}. Assume that X ⊆ V2i \ V2i−2.

This implies that X ∩ π−1
F (W2i−2) = ∅. This amounts to say that πF (X) ∩W2i−2 = ∅. Thus

πF (X) ⊆ W2i \W2i−2. Therefore, to show that πF (X) ∈ ΣW , we have to check that πF (X)

is open and closed in W2i \W2i−2. As πF is a local diffeomorphism at any point x of X, the

set πF (X) is a manifold of dimension 2i, which is open in S′2i. Let us show that it is closed in
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S′2i. Take a sequence ym ⊂ πF (X) such that ym tends to y /∈ πF (X). Let xm ∈ X be such

that πF (xm) = ym. Since πF is proper, xm does not tend to infinity. Taking a subsequence if

necessary, we can assume that xm is convergent. Denote its limit by x. As πF (x) = y /∈ πF (X),

then the point x cannot be in X and thus belongs to V2i−2 since X is closed in V2i \V2i−2. This

implies that y = πF (x) ∈W2i−2, as required.

Let us consider a pair of strata (X,Y ) of the stratification (V) such that X ∩ Y 6= ∅ and let

us prove that (X,Y ) satisfies the Whitney (b) condition. That is clear if X,Y ⊆ SF × {0Rp}. If

none of them is included in SF × {0Rp}, then, as πF is a local diffeomorphism and Whiney (b)

condition is a C1 invariant, this is also clear. Therefore, we can assume that X∩(SF ×{0Rp}) = ∅
and Y ⊆ SF ×{0Rp} (if X ⊆ SF ×{0Rp}, then Y meets SF ×{0Rp} at the points of X and then

Y ⊆ (SF × {0Rp})). Set for simplicity Y := Y ′ × {0Rp}.
As Y is open in π−1

F (Y ′), there exists a subanalytic open subset U ′ of NF such that

U ′ ∩ π−1
F (Y ′) = Y ′ × {0Rp}.

Let U ′′ := h−1
F (U ′ ∩NF \ (SF × {0Rp})). We have

U ′′ ∩ F−1(Y ′) = ∅

(see diagram (3.7)). Consequently, the function distance d(F (x);Y ′) nowhere vanishes on U ′′.

As U ′′ is a closed subset of R2n, by  Lojasiewicz inequality, multiplying the ψi’s by a huge power

of 1
1+|x|2 , we can assume that on U ′′, for every i

(4.3) ψi(zm) << d(F (zm);Y ′)

for any sequence zm tending to infinity.

Now, in order to check that Whitney (b) condition holds, we take xm ∈ X and ym ∈ Y tending

to y ∈ Y ∩X. Assume that l = limxmym and τ = limTxmX exist, we have to check that l is

included in τ .

For every m, xm belongs to hF (Uj) for some j. Extracting a subsequence if necessary, we

may assume that it lies in the same hF (Uj). On Uj , πF is invertible and its inverse is

ψ̂(y) = (y, ψ̃1(y), . . . , ψ̃p(y)),

where ψ̃i(y) = ψi ◦ F−1
|Uj (see section 3.1, see also Proposition 2.3 in [14]).

Let xm = (x′m; ψ̃(x′m)) and ym = (y′m, 0Rp), where x′m = πF (xm) and y′m = πF (ym), then

xm − ym = (x′m − y′m, ψ̃(x′m)). We claim that

(4.4) ψ̃(x′m) << |x′m − y′m|.

If zm = F−1(x′m) then F (zm) = x′m, so that by (4.3), we have

ψ̃i(x
′
m) << d(x′m;Y ′) ≤ |x′m − y′m|,

showing (4.4).
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On one hand, the sets πF (X) and πF (Y ) belong to ΣW , they satisfy the Whitney (b) condition.

As a matter of fact

lim
x′m − y′m
|x′m − y′m|

= l′ ⊆ τ ′ = limTx′mπF (X)

(extracting a sequence if necessary, we may assume
x′m−y

′
m

|x′m−y′m|
is convergent). We have

xm − ym
|xm − ym|

=
(x′m − y′m, ψ̃(xm))

|xm − ym|
→ (l′, 0) = l.

On the other hand, observe that

dxπ
−1
F = (Id, ∂xψ̃1, . . . , ∂xψ̃p).

Multypling ψ by a huge power of 1
1+|x|2 , we can assume that the first order partial derivatives of

ψ̃ at x′m tend to zero as m goes to infinity. Then TxmX tends to τ = limTxmπF (X)× {0Rp} =

τ ′ × {0Rp}. But since l′ ∈ τ ′, l = (l′, 0) ∈ τ = τ ′ × {0Rp}. �

We now generalize Theorem 3.12. Firstly we notice that a polynomial map Fi : Cn → C can

be written

Fi = ΣjFij

where Fij is the homogeneous part of degree dj in Fi. Let dk the highest degree in Fi, the

leading form F̂i of Fi is defined as

F̂i := Fik.

Theorem 4.5. Let F : Cn → Cn be a polynomial mapping with nowhere vanishing Jacobian. If

rankC(DF̂i)i=1,...,n > n− 2, where F̂i is the leading form of Fi, then the following conditions are

equivalent:

(1) F is non proper,

(2) H2(NF ) 6= 0,

(3) IHp
2 (NF ) 6= 0 for any (or some) perversity p,

(4) IHp
2n−2,BM (NF ) 6= 0, for any (or some) perversity p.

Before proving this theorem, we give here some necessary definitions and lemmas.

Definition 4.6. A semi-algebraic family of sets (parametrized by R) is a semi-algebraic set

A ⊂ Rn × R, the last variable being considered as parameter.

Remark 4.7. A semi-algebraic set A ⊂ Rn ×R will be considered as a family parametrized by

t ∈ R. We write At, for “the fiber of A at t”, i.e.,

At := {x ∈ Rn : (x, t) ∈ A}.

Lemma 4.8 ([14]). Let β be a j-cycle and let A ⊂ Rn × R be a compact semi-algebraic family

of sets with |β| ⊂ At for any t. Assume that |β| bounds a (j + 1)-chain in each At, t > 0 small

enough. Then β bounds a chain in A0.
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Definition 4.9 ([14]). Given a subset X ⊂ Rn, we define the “tangent cone at infinity”,

called “contour apparent à l’infini” in [11] by:

C∞(X) := {λ ∈ Sn−1(0, 1) such that ∃ϕ : (t0, t0 + ε]→ X semi-algebraic,

lim
t→t0

ϕ(t) =∞, lim
t→t0

ϕ(t)

|ϕ(t)|
= λ}.

Lemma 4.10 ([11]). Let F = (F1, . . . , Fn) : Rn → Rn be a polynomial mapping and V the zero

locus of F̂ := (F̂1, . . . , F̂n), where F̂i is the leading form of Fi for i = 1, . . . , n. If X is a subset

of Rn such that F (X) is bounded, then C∞(X) is a subset of Sn−1(0, 1) ∩ V.

Proof. By definition, C∞(X) is included in Sn−1(0, 1). We prove now that C∞(X) is included

in V . In fact, given λ ∈ C∞(X), then there exists a semi-algebraic curve γ : (t0, t0 + ε] → X

such that lim
t→t0

γ(t) = ∞ and lim
t→t0

γ(t)
|γ(t)| = λ. Then γ(t) can be written as γ(t) = λtm + . . . and

F̂i = F̂i(λ)tmdi + . . . where di is the homogeneous degree of F̂i. Since F (X) is bounded, then Fi

cannot tend to infinity when t tends to t0, hence F̂i(λ) = 0 for all i = 1, . . . , n. �

Let us prove now Theorem 4.5. We use the idea and technique of the second and third authors

in [14].

Proof of the Theorem 4.5. (4) ⇔ (3) : By Goresky-MacPherson Poincaré duality Theorem, we

have

IHp
2 (NF ) = IHq

2n−2,BM (NF ),

where q is the complementary perversity of p. Since IHp
2 (NF ) 6= 0 for all perversities p, then

IHq
2n−2(NF ) 6= 0, for all perversities q.

(3)⇒ (1), (3)⇒ (2) : If F is proper then the sets SF and K0(F ) are empty. So Sing(NF ) is

empty and NF is homeomorphic to R2n. It implies that H2(NF ) = 0 and IHp
2 (NF ) = 0.

(1)⇒ (2), (1)⇒ (3) : Assume that F is not proper. That means that there exists a complex

Puiseux arc γ : D(0, η)→ R2n, γ = uzα + . . . , (with α negative integer and u is an unit vector

of R2n) tending to infinity in such a way that F (γ) converges to a generic point x0 ∈ SF . Let

δ be an oriented triangle in R2n whose barycenter is the origin. Then, as the mapping hF ◦ γ
(where hF = (F,ψ1, . . . , ψp)) extends continuously at 0, it provides a singular 2-simplex in NF

that we will denote by c.

Since codimRSF = 2, then

0 = dimR{x0} = dimR((SF × {0Rp}) ∩ |c|) ≤ 2− 2 + p2,

because p2 = 0 for any perversity p. So the simplex c is (0, 2)-allowable for any perversity p.

The support of ∂c lies in NF \SF ×{0Rp}. By definition of NF , we have NF \SF ×{0Rp} ' R2n.

Since H1(R2n) = 0, the chain ∂c bounds a singular chain e ∈ C2(NF \SF ×{0Rp}). So σ = c− e
is a (p, 2)-allowable cycle of NF .

We claim that σ may not bound a 3-chain in NF . Assume otherwise, i.e., assume that there

is a chain τ ∈ C3(NF ), satisfying ∂τ = σ. Let

A := h−1
F (|σ| ∩ (NF \ (SF × {0Rp}))),



ON A SINGULAR VARIETY ASSOCIATED TO A POLYNOMIAL MAPPING 203

B := h−1
F (|τ | ∩ (NF \ (SF × {0Rp}))).

By definition, C∞(A) and C∞(B) are subsets of S2n−1(0, 1). Observe that, in a neighborhood

of infinity, A coincides with the support of the Puiseux arc γ. The set C∞(A) is equal to S1.a

(denoting the orbit of a ∈ Cn under the action of S1 on Cn, (eiη, z) 7→ eiηz). Let V be the zero

locus of the leading forms F̂ := (F̂1, . . . , F̂n). Since F (A) and F (B) are bounded, by Lemma

4.10, C∞(A) and C∞(B) are subsets of V ∩ S2n−1(0, 1).

For R large enough, the sphere S2n−1(0, R) with center 0 and radius R in R2n is transverse

to A and B (at regular points). Let

σR := S2n−1(0, R) ∩A, τR := S2n−1(0, R) ∩B.

After a triangulation, the intersection σR is a chain bounding the chain τR.

Consider a semi-algebraic strong deformation retraction ρ : W × [0; 1] → S1.a, where W is a

neighborhood of S1.a in S2n−1(0, 1) onto S1.a.

Considering R as a parameter, we have the following semi-algebraic families of chains:

1) σ̃R := σR
R , for R large enough, then σ̃R is contained in W ,

2) σ′R = ρ1(σ̃R), where ρ1(x) := ρ(x, 1), x ∈W ,

3) θR = ρ(σ̃R), we have ∂θR = σ′R − σ̃R,
4) θ′R = τR + θR, we have ∂θ′R = σ′R.

As, near infinity, σR coincides with the intersection of the support of the arc γ with S2n−1(0, R),

for R large enough the class of σ′R in S1.a is nonzero.

Let r = 1/R, consider r as a parameter, and let {σ̃r}, {σ′r}, {θr} as well as {θ′r} the corre-

sponding semi-algebraic families of chains.

Denote by Er ⊂ R2n ×R the closure of |θr|, and set E0 := (R2n × {0}) ∩E. Since the strong

deformation retraction ρ is the identity on C∞(A)× [0, 1], we see that

E0 ⊂ ρ(C∞(A)× [0, 1]) = S1.a ⊂ V ∩ S2n−1(0, 1).

Denote E′r ⊂ R2n ×R the closure of |θ′r|, and set E′0 := (R2n × {0})∩E′. Since A bounds B,

so C∞(A) is contained in C∞(B). We have

E′0 ⊂ E0 ∪ C∞(B) ⊂ V ∩ S2n−1(0, 1).

The class of σ′r in S1.a is, up to a product with a nonzero constant, equal to the generator of

S1.a. Therefore, since σ′r bounds the chain θ′r, the cycle S1.a must bound a chain in |θ′r| as well.

By Lemma 4.8, this implies that S1.a bounds a chain in E′0 which is included in V ∩S2n−1(0, 1).

The set V is a projective variety which is an union of cones in R2n. Since

rankC(DF̂1)i=1,...,n > n− 2,

it follows that corankC(DF̂1)i=1,...,n = dimC V ≤ 1, so dimR V ≤ 2 and dimR V ∩S2n−1(0, 1) ≤ 1.

The cycle S1.a thus bounds a chain in E′0 ⊆ V ∩ S2n−1(0, 1), which is a finite union of circles. A

contradiction. �

We have the following corollary
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Corollary 4.11. Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial mapping with nowhere

vanishing Jacobian and such that rankC(DF̂i)i=1,...,n > n − 2, where F̂i is the leading form of

Fi. The following conditions are equivalent:

(1) F is nonproper,

(2) H2
∞(Reg(NR

F )) 6= 0,

(3) Hn−2
∞ (Reg(NR

F )) 6= 0,

where NR
F := NF ∩ B̄(0, R), which R is large enough.

The proof is similar to the one in [14].
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