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INTERSECTION THEORY ON ABELIAN-QUOTIENT V -SURFACES AND
Q-RESOLUTIONS

ENRIQUE ARTAL BARTOLO, JORGE MARTÍN-MORALES, AND JORGE ORTIGAS-GALINDO

Abstract. In this paper we study the intersection theory on surfaces with abelian quotient
singularities and we obtain formulas for its behavior under weighted blow-ups. As appli-
cations, we extend Mumford’s formulas for the intersection theory on normal divisors, we
derive properties for quotients of weighted projective planes, and finally, we compute abstract
Q-resolutions of normal surfaces using Jung’s method.

Introduction

In [6], Fulton developed a general intersection theory for algebraic varieties. For the case of
normal surfaces, Mumford [10] provided a more detailed description using resolution of singular-
ities. In this work we focus on V -surfaces with abelian quotient singularities (cyclic V -surfaces
for short). One of the goals is to prove that the resolution of singularities is not needed for the
description of the intersection theory of these V -surfaces and in fact it can be realized following
the same ideas as in the smooth case, see Definition 3.1. In the latter case, the description is
based on the identification of Weil and Cartier divisors. This identification is no longer true for
V -surfaces, but it becomes true using Q-divisors. The relationship between intersection theory
and Weil divisors for normal surface singularities was already studied by F. Sakai [12].

Mumford’s definition is based on the formulas which relate intersection numbers before and
after a blow-up, namely, the self-intersection of the exceptional component and the relationship
between the intersection number of the divisors and the one of their strict transforms. The
main result in this paper, Theorem 4.3, generalizes these formulas replacing smooth surfaces by
cyclic V -surfaces and the standard blow-ups by weighted blow-ups, i.e., the result of blowing up
the weight filtration for an isolated singularity with good C∗-action. These spaces (even in higher
dimension) are V -manifolds with abelian quotient singularities, see [4] (or [1] for a description
closer to the language of this work).

We derive several applications of Theorem 4.3, see [2] for further applications. The first one
is to provide formulas for the intersection theory of normal surfaces in terms of Q-resolutions
instead of standard resolutions, see §2 for definitions and Theorem 4.5 for an explicit statement.
These Q-resolutions are combinatorially less involved than standard resolutions while containing
the same information; e.g., Veys [15] used them to simplify the computation of the topological
zeta function.

The second one is the description of the intersection theory of the most well-known V -surfaces,
namely the weighted projective planes, and more generally, their cyclic quotients, with explicit
formulas, see §5.
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We finish this work with the application of cyclic quotient singularities, Q-resolutions and Q-
intersection theory to the implementation of Jung resolution method of normal singularities. The
idea of this method is the following. Consider a finite projection π of a normal singularity S onto
(C2, 0) with discriminant ∆ and perform an embedded resolution σ of ∆; the normalization of the
pull-back of σ and π happens to be aQ-resolution of S; the resolution of its singularities produces
a resolution of S. There are two main advantages in using the methods developed in this work
with Jung resolution. For the first advantage, one can replace σ by an embedded Q-resolution of
∆ (reducing computation time). For the second one, intersection theory gives a straightforward
way to obtain the final resolution of S with the self-intersections of the exceptional divisors.

We thank J.I. Cogolludo for his fruitful conversations and ideas.

1. V -Manifolds and Quotient Singularities

A V -manifold [13] (or orbifold) of dimension n is a complex analytic space which admits an
open covering {Ui} such that Ui is analytically isomorphic to Bi/Gi where Bi ⊂ Cn is an open
ball and Gi is a finite subgroup of GL(n,C). They have been classified locally by Prill [11]: it is
enough to consider the so-called small subgroups G ⊂ GL(n,C), i.e., without rotations around
hyperplanes other than the identity. We fix the notations when G is abelian.

For d := t(d1 . . . dr) we denote µd := µd1×· · ·×µdr a finite abelian group written as a product
of finite cyclic groups, that is, µdi is the cyclic group of di-th roots of unity in C. Consider a
matrix of weight vectors

A := (aij)i,j = [a1 | · · · |an] ∈ Mat(r × n,Z), aj := t(a1j . . . arj) ∈ Mat(r × 1,Z),

and the action

(1)
(µd1 × · · · × µdr )× Cn −→ Cn, ξd := (ξd1 , . . . , ξdr ),

(
ξd,x

)
7→ (ξa11d1

· . . . · ξar1dr
x1, . . . , ξ

a1n
d1
· . . . · ξarndr

xn), x := (x1, . . . , xn).

Note that the i-th row of the matrix A can be considered modulo di. The set of all orbits Cn/G
is called (cyclic) quotient space of type (d;A) and it is denoted by

X(d;A) := X




d1 a11 · · · a1n
...

...
. . .

...
dr ar1 · · · arn


 .

The orbit of an element x ∈ Cn under this action is denoted by [x](d;A) and the subindex is
omitted if no ambiguity seems likely to arise. Using multi-index notation the action takes the
simple form

µd × Cn −→ Cn,
(ξd,x) 7→ ξd · x := (ξa1

d x1, . . . , ξ
an

d xn).

The quotient of Cn by a finite abelian group is always isomorphic to a quotient space of
type (d;A) but different types (d;A) can give rise to isomorphic quotient spaces. Using [1,
Lemma 1.8] we can prove the following lemma which restricts the number of possible factors of
the abelian group in terms of the dimension.

Lemma 1.1. The space X(d;A) = Cn/µd can always be represented by an upper triangular
matrix of dimension (n−1)×n. More precisely, there exist a vector e = (e1, . . . , en−1), a matrix
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B = (bi,j)i,j, and an isomorphism [(x1, . . . , xn)] 7→ [(x1, . . . , x
k
n)] for some k ∈ N such that

X(d;A) ∼= X




e1 b1,1 · · · b1,n−1 b1,n
...

...
. . .

...
...

en−1 0 · · · bn−1,n−1 bn−1,n


 = X(e;B).

Remark 1.2. For n = 2 it is enough to consider cyclic quotients. Nevertheless, in order to avoid
cumbersome statements, we will allow if necessary quotients of non-cyclic groups.

We say that a type (d;A) is normalized if the action is free on (C∗)n and µd is small as
subgroup of GL(n,C), i.e., if the stabilizer subgroup of P is trivial for all P ∈ Cn with exactly
n− 1 coordinates different from zero. If n = 2, then a normalized type is always cyclic.

In the cyclic case the stabilizer of a point as above (with exactly n− 1 coordinates different
from zero) has order gcd(d, a1, . . . , âi, . . . , an).

Definition 1.3. The index of a quotient X(d;A) of C2 equals d for X(d;A) ∼= X(d; a, b)
normalized.

Example 1.4. Following Lemma 1.1, all quotient spaces for n = 2 are cyclic. The space
X(d; a, b) is written in a normalized form if and only if gcd(d, a) = gcd(d, b) = 1. If this is not
the case, one uses the isomorphism (assuming gcd(d, a, b) = 1)

X(d; a, b) −→ X
(

d
(d,a)(d,b) ;

a
(d,a) ,

b
(d,b)

)
,

[
(x, y)

]
7→

[
(x(d,b), y(d,a))

]

to convert it into a normalized one where (u, v) stands for gcd(u, v).

Weighted projective spaces are canonical examples of compact V -manifolds, see [3]. Let
ω := (q0, . . . , qn) be a weight vector, that is, a finite set of coprime positive integers. There is a
natural action of the multiplicative group C∗ on Cn+1 \ {0} given by

(x0, . . . , xn) 7−→ (tq0x0, . . . , t
qnxn).

The set of orbits Cn+1\{0}
C∗ under this action is denoted by Pnω (or Pn(ω) in case of complicated

weight vectors) and it is called the weighted projective space of type ω. The class of a nonzero
element (x0, . . . , xn) ∈ Cn+1 is denoted by [x0 : . . . : xn]ω and the weight vector is omitted if no
ambiguity seems likely to arise.

Consider the decomposition Pnω = U0 ∪ · · · ∪ Un, where Ui is the open set consisting of all
elements [x0 : . . . : xn]ω with xi 6= 0. The map

ψ̃0 : Cn −→ U0, ψ̃0(x1, · · · , xn) := [1 : x1 : . . . : xn]ω

defines an isomorphism ψ0 if we replace Cn by X(q0; q1, . . . , qn). Analogously,

X(qi; q0, . . . , q̂i, . . . , qn) ∼= Ui

under the obvious analytic map.
Weights can be normalized as follows. Let di := gcd(q0, . . . , q̂i, . . . , qn) and denote

ei := d0 · . . . · d̂i · . . . · dn
and pi := qi

ei
. The following map is an isomorphism:

Pn
(
q0, . . . , qn

)
−→ Pn(p0, . . . , pn)

[x0 : . . . : xn] 7→
[
xd00 : . . . : xdnn

]
.
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Remark 1.5. One can always assume the weight vector is normalized, i.e., it satisfies

gcd(q0, . . . , q̂i, . . . , qn) = 1,

for i = 0, . . . , n. In particular, P1(q0, q1) ∼= P1 and for n = 2 we can take (q0, q1, q2) relatively
prime numbers.

2. Abstract and Embedded Q-Resolutions

An embedded resolution of {f = 0} ⊂ Cn is a proper map π : X → (Cn, 0) from a smooth
variety X satisfying, among other conditions, that π−1({f = 0}) is a normal crossing divisor. To
weaken the condition on the preimage of the singularity we allow the new ambient space X to
contain abelian quotient singularities and the divisor π−1({f = 0}) to have normal crossings over
this kind of varieties. This notion of normal crossing divisor on V -manifolds was first introduced
by Steenbrink in [14].

LetM = Cn+1/µd be an abelian quotient space not necessarily cyclic or written in normalized
form. Consider H ⊂M an analytic subvariety of codimension one.

Definition 2.1. An embedded Q-resolution of (H, 0) ⊂ (M, 0) is a proper analytic map

π : X → (M, 0)

such that:
(1) X is a V -manifold with abelian quotient singularities.
(2) π is an isomorphism over X \ π−1(Sing(H)).
(3) π−1(H) is a Q-normal crossing hypersurface on X (i.e., it has only normal crossings in

the sense of Steenbrink).

In the same way we define abstract Q-resolutions.

Definition 2.2. Let (X, 0) be a germ of singular point. An abstract good Q-resolution is a
proper birational morphism π : X̂ → (X, 0) such that X̂ is a V -manifold with abelian quotient
singularities, π is an isomorphism outside Sing(X), and π−1(Sing(X)) is a Q-normal crossing
divisor.

Note that one can pass from a Q-resolution to a standard resolution by solving the abelian
quotient singularities. These singularities were solved by Fujiki [5]; the solution of the surface
was obtained much earlier and it is known as the Jung-Hirzebruch method, see [7] for an explicit
description.

In the surface case, an embedded Q-resolution is obtained as a composition of the so-called
weighted blow-ups. Let us describe this classical notion in terms of charts.

2.3. Blow-up of X(d; a, b) with respect to ω := (p, q). Let X = X(d; a, b) assumed to be
normalized. Let

π := π(d;a,b),ω : ̂X(d; a, b)ω −→ X(d; a, b)

be the weighted blow-up at the origin of X(d; a, b) with respect to ω = (p, q), i.e.,

̂X(d; a, b)ω := {((x, y), [u : v]ω) ∈ C2 × P1
ω | xqvp = ypuq}

/
µd

where the action of µd is the natural extension of the one defining X(d; a, b) and π is induced
by the first projection. Then, ̂X(d; a, b)ω is covered by

Û1 ∪ Û2 = X

(
p −1 q
pd a pb− qa

)
∪X

(
q p −1
qd qa− pb b

)
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and the charts are given by

1st chart X
(
p
pd

∣∣∣−1 q
a pb−qa

)
−→ Û1 [(x, y)] 7→ [((xp, xqy), [1 : y]ω)](d;a,b) .

2nd chart X
(
q
qd

∣∣∣ p −1
qa−pb b

)
−→ Û2 [(x, y)] 7→ [((xyp, yq), [x : 1]ω)](d;a,b) .

The exceptional divisor E = π−1(d;a,b),ω(0) is identified with the quotient space P1
ω(d; a, b) := P1

ω/µd

which is isomorphic to P1 under the map

P1
ω(d; a, b) −→ P1,

[x : y]ω,(d;a,b) 7→ [xdq/e : ydp/e],

where e := gcd(d, pb− qa).

Remark 2.4. Let us show how to convert a space of type ( pq | a bc d
)
into its cyclic form. By suitable

multiplications of the rows, we can assume p = q = r: X ( rr | a bc d
)
. For the second step we add

a third row by adding the first row multiplied by α and the second row multiplied by β, where
αa+ βc = m and m := gcd(a, c) (note that gcd(α, β) = 1):

X



r
r
r

∣∣∣∣∣∣

a b
c d
m αb+ βd


 = X



r
r
r

∣∣∣∣∣∣

0 −β ad−bcm

0 αad−bcm
m αb+ βd


 = X

(
r
r

∣∣∣∣
0 ad−bc

m
m αb+ βd

)
.

Let t := gcd(r, ad−bcm ). Then, our space is of type (r;m, (αb + βd) rt ) and normalization follows
by taking gcd’s. The isomorphism is [(x, y)] 7→ [(x, y

r
t )](r;m,(αb+βd) r

t )
.

Let us apply the previous remark to the preceding charts. Assume the type (d; a, b) is nor-
malized. To normalize these quotient spaces, note that

e = gcd(d, pb− qa) = gcd(d,−q + βpb) = gcd(pd,−q + βpb) = gcd(qd, p− qaµ),

where βa ≡ µb ≡ 1 mod d. Then another expressions for the two charts are given below.

1st chart X
(
pd
e ; 1, −q+βpbe

)
−→ Û1 [(xe, y)] 7→ [((xp, xqy), [1 : y]ω)](d;a,b) .

2nd chart X
(
qd
e ; −p+µqae , 1

)
−→ Û2 [(x, ye)] 7→ [((xyp, yq), [x : 1]ω)](d;a,b) .

Both quotient spaces are now written in their normalized form. The equation of the charts will
be useful to compute multiplicities, see Remark 4.4.

For an irreducible germ of function in (C2, 0), only a weighted blow-up is needed for each
Puiseux pair in order to compute an embedded Q-resolution, and the weight is determined by
the Puiseux pairs. In the reducible case, one has to consider the weighted blow-ups associated
with the Puiseux pairs of each irreducible component and add also weighted blow-ups associated
with the contact exponents for each pair of branches. There is another longer way to get this
Q-resolution: perform a standard embedded resolution and contract any exceptional component
having at most two singular points in the divisor, cf. [15].

3. Rational Intersection Number on V -Surfaces

Rational intersection multiplicity was first introduced by Mumford for normal surfaces, see [10,
Pag. 17]. A general intersection theory is developed in [6]. In this section we give an alternative
description of Mumford’s definition restricted to V -surfaces. Moreover the use of Q-resolutions
allows us to give an alternative description of Mumford’s definition for normal surfaces which
does not involve a resolution. In particular self-intersection numbers of the exceptional divisors
of weighted blow-ups can be computed directly, see Theorem 4.3.
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In the smooth case it is possible to define the intersection number W · D for divisors W,D
provided W ∩D is finite or W is compact; this definition can be extended to the singular case
when W is a Weil divisor and D is a Cartier divisor. It is well known that V -manifolds are
Q-factorial, i.e., rational Cartier and Weil divisors coincide. Hence a Q-divisor refer to both
notions and the corresponding vector space is denoted by Q-Div(X).

Definition 3.1. Let X be a V -manifold of dimension 2 and consider D1, D2 ∈ Q-Div(X). The
intersection number is defined as

D1 ·D2 :=
1

k1k2
(k1D1 · k2D2) ∈ Q,

where k1, k2 ∈ Z are chosen so that k1D1 is Weil, k2D2 is Cartier and either the divisor D1 is
compact or D1 ∩D2 is finite [6, Ch. 2].

Analogously, it is defined the local intersection number at P ∈ D1 ∩ D2, if the condition
D1 * D2 is satisfied.

For later use we make explicit some properties of this intersection multiplicity. Their proofs
are omitted since they are well known for the classical case (i.e., without tensorizing with Q),
cf. [6], and our generalization is based on extending the classical definition to rational coefficients.

Theorem 3.2. Let F : Y → X be a proper morphism between two irreducible V -surfaces, and
D1, D2 ∈ Q-Div(X).
(1) The cardinal of F−1(P ), P ∈ X being generic, is a finite constant. This number is denoted

by deg(F ).
(2) If D1 ·D2 is defined, then so is the number F ∗(D1) · F ∗(D2). In such a case

F ∗(D1) · F ∗(D2) = deg(F ) (D1 ·D2).

(3) If (D1 ·D2)P is defined for some P ∈ X, then so is (F ∗(D1) ·F ∗(D2))Q, ∀Q ∈ F−1(P ), and∑
Q∈F−1(P )(F

∗(D1) · F ∗(D2))Q = deg(F )(D1 ·D2)P .

4. Intersection Numbers and Weighted Blow-ups

Previously weighted blow-ups were introduced as a tool for computing embeddedQ-resolutions.
To obtain information about the corresponding embedded singularity, an intersection theory on
V -manifolds has been developed. Here we calculate self-intersection numbers of exceptional
divisors of weighted blow-ups on analytic varieties with abelian quotient singularities, see The-
orem 4.3.

The first step in this computation is to explicitly write the exceptional divisor as a rational
Cartier divisor applying the procedure described in [1, §4.3].

Let X be a surface with abelian quotient singularities. Let π : X̂ → X be the weighted
blow-up at a point of type (d; a, b) with respect to ω = (p, q). In general, the exceptional divisor
E := π−1(0) ∼= P1

ω(d; a, b) is a Weil divisor on X̂ which does not correspond to a Cartier divisor.
Let us write E as an element in CaDiv(X̂)⊗Z Q.

As in 2.3, assume π := π(d;a,b),ω : ̂X(d; a, b)ω → X(d; a, b). Assume also that gcd(p, q) = 1 and
(d; a, b) is normalized. Using the notation introduced in 2.3, the space X̂ is covered by Û1 ∪ Û2

and the first chart is given by

(2)
Q1 := X

(
pd
e ; 1, −q+βpbe

)
−→ Û1,

[
(xe, y)

]
7→

[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

,

where e := gcd(d, pb− qa).
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In the first chart, E is the Weil divisor {x = 0} ⊂ Q1. Note that the type representing the
space Q1 is in a normalized form and hence the corresponding subgroup of GL(2,C) is small.

The divisor {x = 0} ⊂ Q1 is written as an element in CaDiv(Q1) ⊗Z Q like e
pd{(Q1, x

pd
e )},

which is mapped to e
pd{(Û1, x

d)} ∈ CaDiv(Û1)⊗Z Q under the isomorphism (2).
Analogously E in the second chart is e

qd{(Û2, y
d)}. Finally one writes the exceptional divisor

of π as claimed,

(3) E =
e

dp

{
(Û1, x

d), (Û2, 1)
}

+
e

dq

{
(Û1, 1), (Û2, y

d)
}

=
e

dpq

{
(Û1, x

dq), (Û2, y
dp)
}
.

We state some preliminary lemmas separately so that the proof of the main result of this
section becomes simpler.

Lemma 4.1. Let X be an analytic surface with abelian quotient singularities and let π : X̂ → X
be a weighted blow-up at a point P ∈ X. Let C be a Q-divisor on X and E the exceptional
divisor of π. Then, E · π∗(C) = 0.

Proof. The proof uses the same ideas as in the smooth case. After multiplying by an integer
we can assume that C is a Cartier divisor. In a neighborhood of P its associated line bundle is
trivial, and hence it is also the case for the associated line bundle of π∗(C) in a neighborhood
of E, and hence the result follows. �

Lemma 4.2. Let X be a V -surface locally irreducible at P ∈ X, and a Q-divisor CX . Consider
a weighted blow-up πX : X̂ → X at P . Denote by EX the exceptional divisor of πX , and ĈX the
strict transform of CX .

Let Y be another V -surface locally irreducible at Q ∈ Y and a proper morphism h : Y → X
such that h−1(P ) = Q and the map πY in the diagram

Ŷ

#

H //

πY

��

X̂

πX

��

Y
h
// X

is a weighted blow-up at Q; the exceptional divisor of πY is denoted by EY . Let us suppose that
there exist two rational numbers, e and ν such that

(a) H∗(EX) = eEY , (b) π∗Y (h∗(CX)) = H∗(ĈX) + νEY .

Then the following equalities hold:

(1) π∗X(CX)= ĈX + ν
eEX , (2) EX · ĈX = −e ν

deg(h)E
2
Y , (3) E2

X = e2

deg(h)E
2
Y .

Proof. For (1) note the total transform π∗X(CX) can always be written as ĈX +mEX for some
m ∈ Q. Considering its pull-back under H∗ one obtains two expressions for the same Q-divisor
on Ŷ ,

H∗(π∗X(CX))
diagram

= π∗Y (h∗(CX))
(b)
= H∗(ĈX) + νEY ,

H∗(ĈX +mEX) = H∗(ĈX) +mH∗(EX)
(a)
= H∗(ĈX) +meEY .

It follows that m = ν
e .
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For (2) first note that deg(H) = deg(h). From Lemma 4.1, one has that EY ·π∗Y (h∗(CX)) = 0.
On the other hand, H being proper, Theorem 3.2(2) can be applied thus obtaining

deg(h)(EX · ĈX) = H∗(EX) ·H∗(ĈX)
(a)-(b)

= eEY ·
[
π∗Y (h∗(CX))− νEY

]
= −eνE2

Y .

Analogously deg(h)E2
X = H∗(EX)2 = e2E2

Y and (3) follows. �

Now we are ready to present the main result of this section.

Theorem 4.3. Let X be an analytic surface with abelian quotient singularities and let π : X̂ → X
be the (p, q)-weighted blow-up at a point P ∈ X of type (d; a, b). Assume gcd(p, q) = 1 and (d; a, b)
is normalized, i.e., gcd(d, a) = gcd(d, b) = 1. Also write e = gcd(d, pb− qa).

Consider two Q-divisors C and D on X. As usual, denote by E the exceptional divisor of π,
and by Ĉ (resp. D̂) the strict transform of C (resp. D). Let ν and µ be the (p, q)-multiplicities
of C and D at P , i.e., x (resp. y) has (p, q)-multiplicity p (resp. q). Then there are the following
equalities:

(1) π∗(C) = Ĉ +
ν

e
E.

(2) E · Ĉ =
eν

dpq
.

(3) E2 = − e2

dpq
.

(4) Ĉ · D̂ = C ·D − νµ

dpq
.

In addition, if D has compact support then D̂2 = D2 − µ2

dpq
.

Proof. The item (4), and final conclusion, are an easy consequence of (1)-(3) and the fact that
π∗(C) · π∗(D) = C ·D.

For the rest of the proof, one assumes that π := πX : ̂X(d; a, b)ω −→ X(d; a, b) is the weighted
blow-up at the origin of X(d; a, b) with respect to ω = (p, q). Now the idea is to apply Lemma 4.2
to the commutative diagram

Ŷ := Ĉ2

#

H //

πY

��

̂X(d; a, b)ω =: X̂

πX

��

Y := C2

h
// X(d; a, b) =: X

where H and h are the morphisms defined by

((x, y), [u : v])
H7−→ [((xp, yq), [up : vq])ω](d;a,b);

(x, y)
h7−→ [(xp, yq)](d;a,b),

and πY is the classical blowing-up at the origin. In this situation E2
Y = −1. The claim is reduced

to the calculation of deg(h) and the verification of the conditions (a)-(b) of Lemma 4.2.
The degree is deg(h) = pq · deg

[
pr : C2 → X(d; a, b)

]
= dpq. For (a), first recall the decom-

positions

(4) ̂X(d; a, b)ω = Û1 ∪ Û2, Ĉ2 = U1 ∪ U2.

One has already written in (3) the exceptional divisor of πX as

EX =
e

dpq

{
(Û1, x

dq), (Û2, y
dp)
}
.
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Hence its pull-back under H, computed by pulling back the local equations, is

H∗(EX) =
e

dpq

{
(U1, x

dpq), (U2, y
dpq)

}
= e

{
(U1, x), (U2, y)

}
= eEY .

Finally for (b) one uses local equations to check π∗Y (h∗(C)) = H∗(Ĉ)+νEY . Suppose the divisor
C is locally given by a meromorphic function f(x, y) defined on a neighborhood of the origin
of X(d; a, b); note that ν = ord(p,q)(f). The charts associated with the decompositions (4) are
described in detail in 2.3. As a summary we recall here the first chart of each blowing-up:

πX : Q1 := X
(
p
pd

∣∣∣−1 q
a pb−qa

)
−→ Û1,

[
(x, y)

]
7→

[
((xp, xqy), [1 : y]ω)

]
.

πY : C2 −→ U1, (x, y) 7→ ((x, xy), [1 : y]).

Note that H respects the decompositions and takes the form (x, y) 7→ [(x, yq)] in the first chart.
Then one has the following local equations for the divisors involved:

Divisor Equation Ambient space
h∗(C) f(xp, yq) = 0 C2

π∗Y (h∗(C)) f(xp, xqyq) = 0 C2 ∼= U1

Ĉ
f(xp, xqy)

xν
= 0 Q1

∼= Û1

H∗(Ĉ)
f(xp, xqyq)

xν
= 0 C2 ∼= U1

EY x = 0 C2 ∼= U1

From these local equations (b) is satisfied and now the proof is complete. �

Remark 4.4. In order to compute multiplicities when looking at multicharts (for quotient spaces)
we must be careful with the expressions in coordinates in case the space is represented by a non-
normalized type. For instance, if a divisor is locally given by the function xmd : X

( p
d

∣∣ −1 q
1 0

)
→ C,

its multiplicity is m.

For a sequence of weighted blow-ups we can adapt Mumford’s approach [10]. Let us fix
X := X(d; a, b) and let us consider π : X̂ → X a sequence of weighted blow-ups. Let E1, . . . , Er
be the set of exceptional components in X̂ and let A := (Ei · Ej)1≤i,j≤r be the intersection matrix
in X̂, which is a negative definite matrix with rational coefficients. We restrict X to a small
neighborhood of the origin. An X̂-curvette γi of Ei is a Weil divisor obtained by considering a
disk transversal to a point of Ei \

⋃
j 6=i Ej and δi = π(γi) is called an X-curvette of Ei; the index

d(γi) := d(δi) is the order of the cyclic group associated with γi ∩ Ei. We say that (γi, γ
′
j) form

a pair of X̂-curvettes for (Ei, Ej) if they are disjoint curvettes for each divisor; in that case their
images in X form a pair (δi, δ

′
j) X-curvettes.

Theorem 4.5. Let B := −A−1 = (bij)1≤i,j≤r. Let (δi, δ
′
j) be a pair of X-curvettes for (Ei, Ej).

Then, δi · δ′j =
bij

d(δi)d(δ′j)
.

Proof. Let γ′i be a generic X̂-curvette. Since γ′i and d(γi)γi are equivalent Weil divisors, we can
assume that d(γi) = 1. We have π∗(δi) = γi +

∑n
j=1 cijEj . Note that γi · Ej = δij (δij being the

Kronecker delta).
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For a generic γ′j we have δ′j · δi = π∗(δ′j) · π∗(δi) = γ′j · π∗(δi) = cij . Since

δik = γi · Ek =
(
π∗(δi)−

n∑

j=1

cijEj
)
· Ek = −

n∑

j=1

(δi · δ′j)(Ej · Ek),

we deduce the result. �

Example 4.6. Assume gcd(p, q) = gcd(r, s) = 1 and p
q <

r
s . Let f = (xp + yq)(xr + ys) and

consider C1 = {xp+yq = 0} and C2 = {xr+ys = 0}. After a sequence of two weighted blow-ups
one obtains Figure 1 representing an embedded Q-resolution of {f = 0} ⊂ C2. We start with
a (q, p)-blow-up over a smooth point; the exceptional divisor Ẽ1 has self-intersection −1pq . We
continue with an (s, qr− ps)-blow-up over a point of type (q;−1, p). We denote by E1 the strict
transform of Ẽ1 and by E2 the exceptional divisor.

p(q + s)E1
(p; q,−1)Q

C2

(s;−1, r)

s(p+ r)E2

C1

Q = X

(
rq − ps s −q
rq − ps −r p

)

Figure 1. Embedded Q-resolution of {(xp + yq)(xr + ys) = 0} ⊂ C2.

The point Q is also of type (rq−ps; ar+bs,−1) where ap+bq = 1. In fact, it is in normalized
form, since gcd(rq − ps, ar + bs) = 1. Since Ẽ1 has multiplicity s the self-intersection of E1 is
−1
pq − s

q(rq−ps) = − r
p(rq−ps) . The self-intersection of E2 is − q

s(rq−ps) . The intersection matrix A
and its opposite inverse B are

A =
1

rq − ps

(− rp 1

1 − qs

)
, B =

(
pq ps
ps sr

)
.

Example 4.7. Let us consider the following divisors on C2,

C1 = {((x3 − y2)2 − x4y3) = 0}, C2 = {x3 − y2 = 0},
C3 = {x3 + y2 = 0}, C4 = {x = 0}, C5 = {y = 0}.

We shall see that the local intersection numbers (Ci ·Cj)0, i, j ∈ {1, . . . , 5}, i 6= j, are encoded
in the intersection matrix associated with any embedded Q-resolution of C =

⋃5
i=1 Ci.

Let π1 : C2
(2,3) → C2 be the (2, 3)-weighted blow-up at the origin. The new space has two

cyclic quotient singular points of type (2; 1, 1) and (3; 1, 1) located at the exceptional divisor E1.
The local equation of the total transform in the first chart is given by the function

x29 ((1− y2)2 − x5y3) (1− y2) (1 + y2) y : X(2; 1, 1) −→ C,

where x = 0 is the equation of the exceptional divisor and the other factors correspond in the
same order to the strict transform of C1, C2, C3, C5 (denoted again by the same symbol). To
study the strict transform of C4 one needs the second chart, the details are left to the reader.

Hence E1 has multiplicity 29 and self-intersection number − 1
6 ; the divisor intersects transver-

sally C3, C4 and C5 at three different points, while it intersects C1 and C2 at the same smooth
point P , different from the other three. The local equation of the divisor E1 ∪ C2 ∪ C1 at this
point P is x29 y (x5 − y2) = 0, see Figure 2 below.
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E1(− 1
6 ) E1(− 17

30 )

C4

(3)

C3

C1

C2
(2)

E2(− 1
10 )

(5)(2)

C5

(2) (3)

C2 C3 C4C5

C1

P

π2←−

Figure 2. Embedded Q-resolution of C =
⋃5
i=1 Ci ⊂ C2.

Let π2 be the (2, 5)-weighted blow-up at the point P above. The new ambient space has
two singular points of type (2; 1, 1) and (5; 1, 2). The local equations of the total transform of
E1 ∪ C2 ∪ C1 are given by the functions in Table 1.

1st chart

x73︸︷︷︸
E2

· y︸︷︷︸
C2

· (1− y2)︸ ︷︷ ︸
C1

: X(2; 1, 1) −→ C

2nd chart

x29︸︷︷︸
E1

· y73︸︷︷︸
E2

· (x5 − 1)︸ ︷︷ ︸
C1

: X(2; 1, 1) −→ C

Table 1. Equations of the total transform.

Thus the new exceptional divisor E2 has multiplicity 73 and it intersects transversally the
strict transform of C1, C2 and E1. Hence the composition π2 ◦ π1 is an embedded Q-resolution
of C =

⋃5
i=1 Ci ⊂ C2. Figure 2 above illustrates the whole process.

As for the self-intersection numbers, E22 = − 1
10 and E21 = − 1

6 − 22

1·2·5 = − 17
30 . The intersection

matrix associated with the embedded Q-resolution obtained and its opposite inverse are

A =

(
−17/30 1/5

1/5 −1/10

)
, B = −A−1 =

(
6 12
12 34

)
.

Now one observes that the intersection number is encoded in B as follows. For i = 1, . . . , 5,
set ki ∈ {1, . . . , 5} such that ∅ 6= Ci∩Eki =: {Pi}. Denote by d(Ci) the index of Pi, see Definition
1.3. Then,

(Ci · Cj)0 =
bki,kj

d(Ci) d(Cj)
.

One has (k1, . . . , k5) = (2, 2, 1, 1, 1) and (d(C1), . . . , d(C5)) = (1, 2, 1, 3, 2). Hence, for instance,

(C1 · C2)0 =
bk1,k2

d(C1) d(C2)
=

b22
1 · 2 =

34

2
= 17,

which is indeed the intersection multiplicity at the origin of C1 and C2. Analogously for the
other indices.

Example 4.8. Consider the group action of type (5; 2, 3) on C2. The previous plane curve C
is invariant under this action and then it makes sense to compute an embedded Q-resolution of
C := C/µ5 ⊂ X(5; 2, 3). Similar calculations as in the previous example, lead to a figure as the
one obtained above with the following relevant differences:

• E1 ∩ E2 is a smooth point.
• E1 (resp. E2) has self-intersection number − 17

6 (resp. − 1
2 ).
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• The intersection matrix is A′ =
(
−17/6 1

1 −1/2

)
and its opposite inverse is

B′ = −(A′)−1 =
(

6/5 12/5
12/5 34/5

)
.

Hence, for instance, (C1 · C2)0 =
b′22
1·2 = 34/5

2 = 17
5 , which is exactly the intersection number of

the two curves, since that local number can be also computed as (C1 · C2)0 = 1
5 (C1 · C2)0.

5. Applications for Weighted Projective Planes

For a given weight vector ω = (p, q, r) ∈ N3 and an action on C3 of type (d; a, b, c), consider
the quotient weighted projective plane P2

ω(d; a, b, c) := P2
ω/µd and the projection morphism

τ(d;a,b,c),ω : P2 → P2
ω(d; a, b, c) defined by

(5) τ(d;a,b,c),ω([x : y : z]) = [xp : yq : zr]ω,d.

The space P2
ω(d; a, b, c) is a variety with abelian quotient singularities. The degree of a Q-

divisor on P2
ω(d; a, b, c) is the degree of its pull-back under the map τ(d;a,b,c),ω, that is, by defini-

tion,

D ∈ Q-Div
(
P2
ω(d; a, b, c)

)
, degω(D) := deg

(
τ∗(d;a,b,c),ω(D)

)
.

Thus if D = {F = 0} is a Q-divisor on P2
ω(d; a, b, c) given by a ω-homogeneous polynomial that

indeed defines a zero set on the quotient projective space, then degω(D) is the classical degree,
denoted by degω(F ), of the quasi-homogeneous polynomial.

The following result can be stated in a more general setting. However, it is presented in this
way to keep the exposition as simple as possible.

Lemma 5.1. The degree of the projection pr : C2 −→ X
(
d ; a b
e ; r s

)
is given by the formula

d · e
gcd

[
d · gcd(e, r, s), e · gcd(d, a, b), as− br

] .

Proof. Assume gcd(d, a, b) = gcd(e, r, s) = 1; the general formula is obtained easily from this
one.

The degree of the required projection C2 → X
(
d ; a b
e ; r s

)
is de` , where ` is the order of the abelian

group
H =

{
(ξ, η) ∈ µd × µe | ξaηr = 1, ξbηs = 1

}
C (µd × µe).

To calculate `, consider (ξ, η) ∈ µd × µe and solve the system ξaηr = 1, ξbηs = 1. Raising
both equations to the e-th power, one obtains ξae = 1 and ξbe = 1. Hence,

ξ ∈ µd ∩ µae ∩ µbe = µgcd(d,ae,be) = µgcd(d,e).

Note that the assumption gcd(d, a, b) = 1 was used in the last equality. Analogously, it follows
that η ∈ µgcd(d,e), provided that gcd(e, r, s) = 1.

Thus, there exist i, j ∈ {0, 1, . . . , gcd(d, e)− 1} such that ξ = ζi and η = ζj , where ζ is a fixed
(d, e)-th primitive root of unity. Now the claim is reduced to finding the number of solutions of
the system of congruences

{
ai+ rj ≡ 0
bi+ sj ≡ 0

(
mod gcd(d, e)

)
.

This is known to be gcd(d, e, as− br) and the proof is complete. �



INTERSECTION THEORY AND Q-RESOLUTIONS 23

Proposition 5.2. Using the notation above, let us denote by m1, m2, m3 the determinants of
the three minors of order 2 of the matrix

( p q r
a b c

)
. Denote e := gcd(d,m1,m2,m3).

Then the intersection number of two Q-divisors on P2
ω(d; a, b, c) is

D1 ·D2 =
e

dpqr
degω(D1) degω(D2) ∈ Q.

In particular, the self-intersection number of a Q-divisor is given by D2 = e
dpqr degω(D)2.

Moreover, if |D1| * |D2|, then |D1| ∩ |D2| is a finite set of points and

(6)
e

dpqr
degω(D1) degω(D2) =

∑

P∈|D1|∩|D2|

(D1 ·D2)P .

Proof. For simplicity, let us just write τ for the map defined in (5) omitting the subindex. Note
that τ is a proper morphism between two irreducible V -manifolds of dimension 2. Thus by
Theorem 3.2(2) and the classical Bézout’s theorem on P2 one has the following sequence of
equalities,

deg(τ)(D1 ·D2)=τ∗(D1) · τ∗(D2)=deg (τ∗(D1)) deg (τ∗(D2)) = degω(D1) degω(D2).

The rest of the proof is the computation of deg(τ).
In the first chart τ takes the form C2 → X

( p ; q r
pd ; m1 m2

)
, (y, z) 7→ [(yq, zr)]. By decomposing

this morphism into C2 → C2, (y, z) 7→ (yq, zr) and the natural projection C2 → X
( p ; q r
pd ; m1 m2

)
,

(y, z) 7→ [(y, z)], one obtains

deg(τ) = qr · deg
[
C2 pr−→ X

( p ; q r
pd ; m1 m2

)]
.

The determinant of the corresponding matrix is qm2 − rm1 = pm3. From Lemma 5.1 the latter
degree is

p · pd
gcd

(
p · gcd(pd,m1,m2), pd, pm3

) =
dp

gcd
(
d,m1,m2,m3

) ,

and hence the proof is complete. �

Corollary 5.3. Let X, Y , Z be the Weil divisors on P2
ω(d; a, b, c) given by {x = 0}, {y = 0}

and {z = 0}, respectively. Using the notation of Proposition 5.2 one has:

(1) X2 =
ep

dqr
, Y 2 =

eq

dpr
, Z2 =

er

dpq
.

(2) X · Y =
e

dr
, X · Z =

e

dq
, Y · Z =

e

dp
. �

Remark 5.4. If d = 1 then e = 1 too and the formulas above become a bit simpler. In particular,
one obtains the classical Bézout’s theorem on weighted projective planes, (the last equality holds
if |D1| * |D2| only)

D1 ·D2 =
1

pqr
degω(D1) degω(D2) =

∑

P∈|D1|∩|D2|

(D1 ·D2)P .

Example 5.5. Let us consider X := P2
ω, for ω = (p, q, r). We recall that P := [0 : 1 : 0]ω is a

singular point of type (q; p, r). We are going to perform the (p, r)-blow-up at this point. The
new surface X̂P admits a map onto π : X̂P → P1

(p,r)
∼= P1 with rational fibers. This surface

has (at most) four singular points; two of them come from X and they are of type (p; q, r),
Q := [1 : 0 : 0]ω, and (r; p, q), R := [0 : 0 : 1]ω. The other two points are in the exceptional
divisor E and they are of type (p;−q, r) and (r; p,−q); the singular points which are quotient by
µp are in the same fiber for π and the same happens for µr. The map has two relevant sections,
E and the transform of y = 0.
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The exceptional component E has self-intersection − q
pr . Since the curve y = 0 does not pass

through P its self-intersection is the one in P2
ω, i.e.,

q
pr . The fibers F of π have self-intersection 0;

a generic fiber is obtained as follows. Consider a curve L of equation xr − zp = 0 in P2
ω. Then

π∗L = F + pr
q E and F 2 = 0. The surface X̂P looks like a Hirzebruch surface of index q

pr .

6. Application to Jung resolution method

One of the main reasons to work with Q-resolutions of singularities is the fact that they
are much simpler from the combinatorial point of view and they essentially provide the same
information as classical resolutions. In the case of embedded resolutions, there are two main
applications. One of them is concerned with the study of the Mixed Hodge Structure and the
topology of the Milnor fibration, see [14]. The other one is the Jung method to find abstract
resolutions, see [8] and a modern exposition [9] by Laufer.

The study of the Mixed Hodge Structure is related to a process called the semistable resolution
which introduces abelian quotient singularities and Q-normal crossing divisors. The work of the
second author in his thesis guarantees that one can substitute embedded resolutions by embedded
Q-resolutions obtaining the same results. As for the Jung method, we will explain the usefulness
of Q-resolutions at the time they are presented.

6.1. Classical Jung Method. Let H ⊂ (Cd+1, 0) be a hypersuface singularity defined by
a Weiestraß polynomial f(x0, x1, . . . , xd) ∈ C{x1, . . . , xd}[x0]. Let ∆ ∈ C{x1, . . . , xd} be the
discriminant of f . We consider the projection π : H → (Cd, 0) which is an n-fold covering
ramified along ∆. Let σ : X → (Cd, 0) be an embedded resolution of the singularities of ∆. Let
X̂ be the pull-back of σ and π. In general, this space has non-normal singularities. Denote by
ν : X̃ → X̂ its normalization.

X̄
τ // X̃

ν //

π̃

��

σ̃

&&

#

X̂ //

��

#

H

π

��

X X
σ
// Cd

There are two mappings issued from X̃: π̃ : X̃ → X and σ̃ : X̃ → H. The map π̃ is an
n-fold covering whose branch locus is contained in σ−1(∆). In general, X̃ is not smooth, it has
abelian quotient singular points over the (normal-crossing) singular points of σ−1(∆). Consider
τ : X̄ → X̃ the resolution of X̃, see [5]. Then σ̃ ◦ τ : X̄ → H is a good abstract resolution of the
singularities of H.

6.2. Jung Q-method. In the previous method, σ̃ is a Q-resolution of H. This is why replacing
σ by an embedded Q-resolution is a good idea. First, the process to obtain an embedded Q-
resolution is much shorter; we can reproduce the process above and the space X̃ obtained only
has abelian quotient singularities and the exceptional divisor has Q-normal crossings, i.e., σ̃ is
an abstract Q-resolution of H, usually simpler than the one obtained by the classical method.

If anyway, one is really interested in a standard resolution of H, the most direct way to
find the intersection properties of the exceptional divisor of σ̃ ◦ τ is to study the Q-intersection
properties of the exceptional divisor of σ̃ and construct τ as a composition of weighted-blow ups.

We explain this process more explicitly in the case d = 2. After the pull-back and the nor-
malization process, the preimage of each irreducible divisor E of ∆ is a (possibly non-connected)
ramified covering of E . In order to avoid technicalities to describe these coverings, we restrict
our attention to the cyclic case, i.e., H = {zn = f(x, y)}.
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In this case the reduced structure of ∆ is the one of f(x, y) = 0. We consider the minimal Q-
resolution of ∆, which is obtained as a composition of weighted blow-ups following the Newton
process.

Let E be an irreducible component of σ−1(∆) with multiplicity s := mE .

6.3. Generic points of E. Consider a generic point p ∈ E with local coordinates (u, v) such
that v = 0 is E and (f ◦ σ)(u, v) = vs. Note that p has only one preimage in X̂; X̄ looks
in a neighborhood of this preimage like {(u, v, z) ∈ C3 | zn = vs}. The normalization of this
space produces gcd(s, n) points which are smooth. Then, the preimage of E in X̃ is (possibly
non-connected) gcd(s, n)-sheeted cyclic covering ramified on the singular points of E in σ−1(∆);
the number of connected components and their genus will be described later. Note also that X̃
is smooth over the smooth part of E in σ−1(∆).

Remark 6.4. In the general (non-cyclic) case, the local equations can be more complicated but
we always have that the preimage of E in X̃ is a possibly non-connected covering ramified on
the double points of E in σ−1(∆) and X̃ is smooth over the non-ramified part of E .

Let p ∈ Sing0(E) of normalized type (d; a, b). Since d divides s, let us denote:

s0 :=
s

d
, g := gcd(n, s0), n1 :=

n

g
, s1 :=

s0
g
, e := gcd(n1, d), n2 :=

n1
e
, d1 :=

d

e
.

Lemma 6.5. The preimage of p under π̃ consists of g points of type (d1; an2, b).

Proof. The local model of X̂ around the preimage of p is of the type

{([(u, v)], z) ∈ X(d; a, b)× C | zn = vs}.
Consider

zn − vs =
∏

ζg∈µg

(zn1 − ζgvs1d).

Note that each factor is well defined in X(d; a, b)×C, and hence the normalization is composed
by g copies of the normalization of zn1 = vs1d.

In C3 the space zn1 = vs1d has e irreducible components and the action of µd permutes
cyclically these components. Hence the quotient of this space by µd is the same as the quotient
of zn2 = vs1d1 by the action of µd1 defined by ζd1 · (u, v, z) 7→ (ζad1u, ζ

b
d1
v, z). The normalization

of zn2 = vs1d1 is given by
(u, t) 7→ (u, tn2 , ts1d1)

and the induced action of µd1 is defined by

ζd1 · (u, t) 7→ (ζad1u, ζ
bα
d1 t), αn2 ≡ 1 mod d1.

The result follows since (d1; a, bα) = (d1; an2, b). �

Let us consider now a double point p of type X(d; a, b) (normalized), (E1, E2) and let r, s be
the multiplicities of E1, E2. Some notation is needed:

m0 :=
ar + bs

d
, n1 :=

n

g
, r1 :=

r

g
, s1 :=

s

g
,m1 :=

m0

g
.

Note that ar1 + bs1 = m1d. We complete the notation:

e := gcd(n1, r1, s1), n2 :=
n1
e
, r2 :=

r1
e
, s2 :=

s1
e
, d1 :=

d

e
.
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Since gcd(m1, e) = 1, e divides d and then d1 ∈ Z. Note that ar2 + bs2 = m1d1. Since
gcd(n2, r2, s2) = 1, one fixes k, l ∈ Z such that m1 + kr2 + ls2 ≡ 0 mod n2 and denote:

a′ := a+ kd1, b′ := b+ ld1.

Lemma 6.6. The preimage of p under π̃ consists of g points of type

X

(
d1n2
n2

∣∣∣∣
a′ b′

s2 −r2

)
.

The type is not normalized.

Proof. The local model of X̂ over p is {([(u, v)], z) ∈ X(d; a, b)× C | zn = urvs}. We have

zn − urvs =
∏

ζg∈µg

(zn1 − ζgur1vs1).

Since each factor is well-defined in X(d; a, b)× C, the normalization is composed by g copies of
the normalization of zn1 = ur1vs1 .

In C3 the space zn1 = ur1vs1 has e irreducible components and the action of µd permutes
cyclically these components. Hence the quotient of this space by µd is the same as the quotient
of zn2 = ur2vs2 by the action of µd1 defined by ζd1 · (u, v, z) 7→ (ζad1u, ζ

b
d1
v, z).

Note that a, b can be replaced by a′, b′ in the action of µd1 . Moreover, D := a′r2 + b′s2 ≡ 0
mod n2. The map

(t, w) 7→ (tn2 , wn2 , tr2ws2)

parametrizes (not in a biunivocal way) the space zn2 = ur2vs2 . The action of µn2d1 defined by

ζn2d1 · (t, w) 7→ (ζa
′

n2d1t, ζ
b′

n2d1w)

lifts the former action of ζd1 . The normalization of the quotient of zn2 = ur2vs2 by the action
of µd1 is deduced to be of (non-normalized) type

X

(
d1n2
n2

∣∣∣∣
a′ b′

s2 −r2

)
. �

Remark 6.7. It is easier to normalize this type case by case, but at least a method to present it
as a cyclic type is shown here. Let µ := gcd(a′, d1s2) and let β, γ ∈ Z such that µ = βa′+γd1s2.
Note that µ divides D. Then the preceding type is isomorphic (via the identity) to

X




n2
n2
d1n2

∣∣∣∣∣∣

0 γDµ
0 −βDµ
µ βb′ − γd1r2


 = X

(
n2
d1n2

∣∣∣∣
0 D

µ

µ βb′ − γd1r2

)

since gcd(β, γ) = 1. Let h := gcd(n2,
D
µ ). Then, this space is isomorphic to X(d1n2;α, (βb′ −

γd1r2)n2

h ). If j := gcd(µ, n2

h ), then it is isomorphic to the space X(d1h; µj , βb
′ − γd1r2) (maybe

non normalized).

The following statement summarizes the results for each irreducible component of the divisor.

Lemma 6.8. Let E be an exceptional component of σ with multiplicity s, m := gcd(s, n). Let
Sing(E) be the union of Sing0(E) with the double points of σ−1(∆) in E. Let ν be the gcd of s and
the values gP for each P ∈ Sing(E) obtained in Lemmas 6.5 and 6.6. Then, π̃−1(E) consists of ν
connected components. Each component is an ( sν )-fold cyclic covering whose genus is computed
using Riemann-Hurwitz formula and the self-intersection of each component is m2η

nν if η = E2.
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Proof. Only the self-intersection statement needs a proof. Let Ẽ := π̃−1(E). Then π̃∗(E) = n
m Ẽ .

Hence:

Ẽ2 =
m2

n2
π̃∗(E)2 =

m2

n
(E)2 =

m2η

n
.

Since Ẽ has ν disjoint components related by an automorphism of X̃, the result follows. �

Example 6.9. Let us consider the singularity zn − (x2 + y3)(x3 + y2) = 0, n > 1. As it
was shown in Example 4.6, the minimal Q-embedded resolution of (x2 + y3)(x3 + y2) = 0 has
two exceptional components E1, E2. Each component has multiplicity 10, self-intersection − 3

10 ,
intersects the strict transform at a smooth point and has one singular point of type (2; 1, 1).
The two components intersect at a double point of type (5; 2,−3) = (5; 1, 1). Let us denote
gp(n) the previous numbers for a given n. The computations are of four types depending on
gcd(n, 10) = 1, 2, 5, 10.

Let us fix one of the exceptional components, say E1, since they are symmetric. Before
studying separately each case, let p0 be the intersection point of E1 with the strict transform,
then its preimage is the normalization of zn−xy10 = 0 which is of type (n;−10, 1). In particular
gp(n) = 1 and νE1 = 1, i.e., Ẽ1 := π̃−1(E1) is irreducible. Let us denote p1 := E1 ∩ E2.
Case 1. gcd(n, 10) = 1.

Let us study first the preimage over a generic point of E1, which will be the normalization of
zn− y10 = 0, i.e., one point. By Lemma 6.8, Ẽ1

2
= − 3

10n and Ẽ1 is rational. The preimage of p0
is of reduced type (n;−10, 1).

Let p ∈ Sing0(E1). It is of type (2; 1, 1). Applying Lemma 6.5, one obtains that it is of type
(2; 11, 1) = (2; 1, 1).

One has gp1(n) = e = 1. Following the notation previous to Lemma 6.6, we choose k = l ∈ Z
such that 5k + 1 ≡ 0 mod n. A type(

5n
n

∣∣∣∣
1 + 5k 1 + 5k

10 −10

)
=

(
5n
n

∣∣∣∣
1 + 5k 1 + 5k

1 −1

)
=

(
5n
5n

∣∣∣∣
1 + 5k 1 + 5k

5 −5

)
,

is obtained, which is of type (5n; 1, 10k+1); since (10k+1)2 ≡ 1 mod 5n, this type is symmetric
and normalized. Then, the minimal embedded Q-resolution of the surface singularity consists of
two rational divisors of self-intersection− 3

10n , with a unique double point of typeX(5n; 1; 1+10k)
and each divisor has two other singular points, one double and the other one of typeX(n;−10, 1).

e1 = − 3
10n

(2; 1, 1)

E1 E2
e2 = − 3

10n

(n;−10, 1)
(2; 1, 1)(5n; 1, 1 + 10k)

(n;−10, 1)

Figure 3. Dual graph for zn = (x2 + y3)(x3 + y2), gcd(n, 10) = 1, 5k + 1 ≡ 0 mod n.

Case 2. gcd(n, 10) = 2.

The preimage over a generic point of E1, which will be the normalization of zn− y10 = 0, i.e.,
Ẽ1 := π̃−1(E1) is a 2-fold covering of E1. The point p0 is a ramification point of the covering
(with one preimage) and it is of type (n;−10, 1) = (n2 ;−5, 1).

Let p ∈ Sing0(E1). Since s0 = 2, gp(n) = 1 and e = 2, applying Lemma 6.5, one has d1 = 1.
There is only one preimage and it is a smooth point.
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Let us finish with p1. In this case, gp1(n) = 2, n1 := n
2 , and e = 1. It can be chosen k = l ∈ Z

such that 5k+ 1 ≡ 0 mod n1. Using the same computations as in the previous case, two points
of type X(5n1; 1, 10k + 1) are obtained.

Using Riemann-Hurwitz formula Ẽ1 is irreducible and rational; since π̃∗(E1) = 5Ẽ1 one has
that Ẽ1

2
= − 3

5n1
. Then, the minimal embedded Q-resolution of the surface singularity consists

of two rational divisors, with two double points of type X(5n1; 1, 1 + 10k) and each divisor has
another singular point of type X(n1;−5, 1). Note that the graph is not a tree.

e1 = − 6
5n

E1 E2
e2 = − 6

5n

(n2 ;−5, 1)
( 5n2 ; 1, 1 + 10k)

(n5 ;−2, 1)

( 5n2 ; 1, 1 + 10k)

Figure 4. Dual graph for zn = (x2 + y3)(x3 + y2), gcd(n, 10) = 2, 5k + 1 ≡ 0 mod n
2 .

Case 3. gcd(n, 10) = 5.

The preimage over a generic point of E1, which will be the normalization of zn − y10 = 0,
i.e., Ẽ1 := π̃−1(E1) is a 5-fold covering of E1. As above, p0 is a ramification point of the covering
(with one preimage) and it is of type (n;−10, 1) = (n5 : −2, 1).

Let p ∈ Sing0(E1). One has gp(n) = 5 and d1 = 2. Hence the covering does not ramify at p
and its preimage consists of 5 points of type (2; 1, 1).

In the case of p1 we have gp1(n) = 1, e = 5, n2 = n
5 and d1 = 1. Hence a point of type

X(n2; 1,−1) is obtained.
As a consequence, Ẽ1 is rational and Ẽ1

2
= − 3

2n2
. Then, the minimal embedded Q-resolution

of the surface singularity consists of two rational divisors, with a single double point of type
X(n2; 1;−1) and each divisor has another singular point of type X(n2;−2, 1) and five double
points.

e1 = − 15
2n

(2; 1, 1)

E1 E2
e2 = − 15

2n

(n5 ;−2, 1)
(2; 1, 1)(n5 ; 1,−1)5 times 5 times

(n5 ;−2, 1)

Figure 5. Dual graph for zn = (x2 + y3)(x3 + y2), gcd(n, 10) = 5.

Case 4. gcd(n, 10) = 10.

The preimage over a generic point of E1, which will be the normalization of zn− y10 = 0, i.e.,
Ẽ1 := π̃−1(E1) is a 10-fold covering of E1. The point p0 is a ramification point of the covering
(with one preimage) and it is of type (n;−10, 1) = ( n10 : −1, 1).

Let p ∈ Sing0(E1). One has gp(n) = 5 and d1 = 1. Hence the preimage of p consists of 5
smooth points.

Finally one has gp1(n) = 2, e = 5, n2 = n
10 and d1 = 1. Hence a point of type X(n2; 1,−1) is

obtained.
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Using Riemann-Hurwitz, Ẽ1 has genus 2; since π̃∗(E1) = Ẽ1, then Ẽ1
2

= − 3
n2

. Then, the
minimal embedded Q-resolution of the surface singularity consists of two divisors of genus 2,
with one double point of type X(n2; 1;−1) and each divisor has another singular point of type
X(n2;−1, 1).

e1 = − 30
n

E1 E2
e2 = − 30

n

( n
10 ; 1,−1) ( n

10 ; 1,−1)( n
10 ; 1,−1)

( n
10 ; 1,−1)

g1 = 2 g2 = 2

Figure 6. Dual graph for zn = (x2 + y3)(x3 + y2), gcd(n, 10) = 10.

As a final application, intersection theory and weighted blow-ups are essential tools to con-
struct a resolution from aQ-resolution. Note that even when one uses the classical Jung method,
this step is needed. The resolution of cyclic quotient singularities for surfaces is known, see §6
for references.

This resolution process uses the theory of continuous fractions. We illustrate the use of
weighted blow-ups to solve these singularities in two ways.

First, let X := X(d; a, b), where d, a, b are pairwise coprime, d > 1, and 1 ≤ a, b < d. Then the
(a, b)-blow-up of X produces a new space with an exceptional divisor (of self-intersection − d

ab )
and two singular points of type (a;−d, b) and (b; a− d). Since the index of these singularities is
less than d we finish by induction. Note that if we have a compact divisor passing through the
singular point, it is possible to compute the self-intersection multiplicity of the strict transform,
see Theorem 4.3.

The second way allows us to recover the Jung-Hirzebruch resolution. Recall briefly the notion
of continuous fraction. Let s ∈ Q, r > 1. The continuous fraction associated with s is a tuple of
integers cf(s) := [q1, . . . , qn], qj > 1, defined inductively as follows:

• If s ∈ Z then cf(s) := [s].
• If s /∈ Z, write s = d

k in reduced form. Consider the excess division algorithm d = qk−r,
q, r ∈ Z, 0 < r < k. Then, cf(s) := [q, cf(kr )].

Hence, for instance, [q1, q2, q3] = q1 − 1
q2− 1

q3

.

With this technique we recover the well-known Jung-Hirzebruch resolution, see e.g. [7].

Proposition 6.10. Let X := X(d; 1, k) be a normalized type with 1 ≤ k < d and let

cf(
d

k
) := [q1, . . . , qn].

Then the exceptional locus of the resolution of X consists of a linear chain of rational curves
with self-intersections −q1, . . . ,−qn.
Proof. As stated above, we perform the (1, k)-blow-up of X. We obtain an exceptional divisor
E1 such that E21 = − dk . If k = 1, we are done. If k > 1 then E1 contains a singular point
Y := X(k; 1,−d). We know that d = q1k − r, 1 < r < k, and cf(kr ) = [q2, . . . , qn]. Since
r = q1k − d, then Y = X(k; 1, r). We may apply induction hypothesis (in the length of cf) and
the result follows if we obtain the right self-intersection multiplicity of the first divisor.

The next blow-up is with respect to (1, r). Following Theorem 4.3, the self-intersection of
the strict transform of E1 equals − dk − r2

k·1·r = − dk − r
k = −q1, since the divisor E1 is given by

{y = 0} ⊂ X(k; 1, r). �
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Remark 6.11. The last part of the proof allows us to give the right way to pass from aQ-resolution
to a resolution. The Jung-Hirzebruch method gives the resolution of the cyclic singularities.
Let E be an irreducible component of the Q-resolution with self-intersection −s ∈ Q, and let
Sing(E) := {P1, . . . , Pr}, with Pi of type (di; 1, ki), 1 ≤ ki < di and gcd(di, ki) = 1. Then, the
self-intersection number of E , assuming its local equation is y = 0, can be computed as above.
That is, one performs the weighted blow-ups of type (1, ki) at each point, obtaining −s−∑r

i=1
ki
di
,

which must be an integer.
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