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POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES

TARO FUJISAWA

ABSTRACT. We construct polarizations of mixed Hodge structures on the relative log de Rham
cohomology groups of a projective log deformation. To this end, we study the behavior of
weight and Hodge filtrations under the cup product and construct a trace morphism for a
projective log deformation.

INTRODUCTION

0.1. In [22] Steenbrik introduced the notion of the log deformation and constructed mixed Hodge
structures on the relative log de Rham cohomology groups of a projective log deformation. In
this article, we construct natural polarizations on these mixed Hodge structures in the sense of
Cattani-Kaplan-Schmid [2, Definition (2.26)].

A typical example of log deformations is the singular fiber of a semistable reduction over the
unit disc. For the case of a projective semistable reduction over the unit disc, the mixed Hodge
structure on the relative log de Rham cohomology groups of the singular fiber is considered as
the limits of Hodge structures on the cohomology groups of general fibers, and called the limit-
ing mixed Hodge structures. These mixed Hodge structures were constructed by two different
methods, the transcendental method in [20] and the algebro-geometric method in [21]. In fact,
Schmid’s nilpotent orbit theorem and SLs-orbit theorem imply that a variation of polarized
Hodge structures on the punctured disc degenerates to a polarized mixed Hodge structure ([20,
(6.16) Theorem]). For the case of a projective semistable reduction over the unit disc, the Hodge
structures on the cohomology groups of fibers induce variations of polarized Hodge structures
on the punctured disc. By applying Schmid’s result above to these variations of polarized Hodge
structures, we obtained the limiting mixed Hodge structures. Here we note that these mixed
Hodge structures are canonically polarized by their construction. On the other hand, Steen-
brink constructed mixed Hodge structures on the relative log de Rham cohomology groups of
the singular fiber of a projective semistable reduction over the unit disc by algebro-geometric
methods. The coincidence between Steenbrink’s mixed Hodge structures and Schmid’s mixed
Hodge structures was proved in [19, 4.2.5 Remarque] and in [23, (A.1)] independently. The moti-
vation of this article is to construct the polarizations on the limiting mixed Hodge structures by
algebro-geometric methods in Steenbrink’s approach. Once we obtain polarizations in Theorem
8.16 below, the remaining task is to prove that our polarizations coincide with the ones given in
[20, (6.16) Theorem)] for the case of a projective semistable reduction.

The main result of this article concerns the question whether the mixed Hodge structures
on the relative log de Rham cohomology groups of a projective log deformation yield nilpotent
orbits. In fact, Kashiwara-Kawai [13, Proposition 1.2.2] and Cattani-Kaplan [1, Theorem (3.13)]
show that a polarized mixed Hodge structure yields a nilpotent orbit and vice versa. Therefore
the main result of this article implies that the relative log de Rham cohomology groups of a
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projective log deformation give us nilpotent orbits. Thus, it is expected that a projective log
deformation yields polarized log Hodge structures on the standard log point (see Kato-Usui [15,
2.5]) as a by-product of our main result. This question is treated in the forthcoming article [9].

0.2. Let Y — x be a projective log deformation of pure dimension n. In order to put mixed
Hodge structures on the log de Rham cohomology groups HY(Y,wy/,), we replace wy,, by the
weak cohomological mixed Hodge complex K defined in [6, (5.4)]. Here we note that the complex
K carries a multiplicative structure which is compatible with the wedge product on wy,. Then
our aim is, more precisely, to construct polarizations on HY(Y, K) for all ¢. To this end, we
follow a way similar to the case of compact Kéhler complex manifolds. First, we construct a
cup product on H*(Y, K') by using the multiplicative structure on K. Second, we define a trace
morphism H?*(Y, K) — C. Third, we study the property of the cup product with the class of
an ample invertible sheaf in H2(Y, K). Finally, we prove a kind of positivity for the bilinear form
as a conclusion. The key ingredient for our argument is the comparison morphism ¢ : A — K,
where A denotes the cohomological mixed Hodge complex constructed by Steenbrink in [22,
Section 5] (cf. [21, Section 4]). By the fact that ¢ induces isomorphisms of mixed Hodge
structures between H?(Y, A) and H?(Y, K) for all ¢, we can apply the results by Guillén-Navarro
Aznar [11, (5.1)Théoréme], or by Morihiko Saito [19, 4.2.5 Remarque] to prove the positivity.

This article is organized as follows: In Section 1, we fix the notation and the sign convention
used in this article. Section 2 treats the Cech complex of a co-cubical complex. We give the
definition of a product morphism for the Cech complexes of two co-cubical complexes. In Section
3, we study the residue morphisms for the log de Rham complex and for the Koszul complex of a
log deformation. Section 4 is devoted to the study of the Gysin morphism for a log deformation.
In Section 5, we first recall the definition of the complex K in [6] for the case of a log deformation.
We slightly modify the definition and the notation in [6]. Then we recall results of [6] in Theorem
5.9. Next, we study several properties of the Gysin morphism of the complex K for the later
use. Furthermore, we recall the definition of the complex A in Steenbrink [22] and in Fujisawa-
Nakayama [8]. Here we also modify the definition of A slightly. Theorem 5.21 restates the results
of [22] and of [8]. Then we construct the comparison morphism ¢ from A to K mentioned above.
We prove that the morphism ¢ induces isomorphisms between H?(Y, A) and H?(Y, K) for all ¢
in this section. In Section 6, the multiplicative structures on the complex K and on other
related complexes are studied. The multiplicative structure on K induces the cup product on
H*(Y, K) mentioned above. We prove that the cup product on H*(Y, K) satisfies the expected
properties for the weight filtration W and the Hodge filtration F. In Section 7, the trace
morphism Tr : H2"(Y, K¢) — C mentioned above is defined by using the Eo-degeneracy of the
spectral sequence EP4(K¢, W). The cup product on H*(Y, K) and the trace morphism induce
the bilinear form Qg on H*(Y, K). Combining all these together in Section 8, we prove the main
results of this article by applying the results on bigraded polarized Hodge-Lefschetz modules in
[11].

0.3. The results of this article have been already announced with few proofs in [7]. There we
restrict ourselves to the case of a semistable reduction over the unit disc for simplicity. In this
paper we will give the complete proofs for the results. Moreover, we modify some definitions
slightly and correct several mistakes in [7].

1. PRELIMINARIES

In this section, we collect several definitions which will be used in this article constantly. We
follow [3, 1.3] and [16, Notation] for sign conventions. We recall some of them for the later use.

1.1. The cardinality of a finite set A is denoted by |A]|.
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1.2. For the shift of an increasing filtration W, we use the notation by Deligne [5, Définition
(1,1,2), (1,1,3)]. Namely, we set

W[k]m = Wm—k
for every k,m. This notation is different from that used by Cattani-Kaplan-Schmid [2, p.475].
For the shift of a decreasing filtration F', we follow the standard notation, that is,

F[k]P = Frtk
for every k, p.

1.3. Let f: K — L be a morphism of complexes. The complex (C(f),d), called the mapping
cone of f, is defined by

C(f)P = KPptlgp
d(z,y) = (—dw, f(z) +dy) =€ K" yelP
as in [12]. Two morphisms of complexes
a(f): L —C(f)
B(f) - C(f) — K]
are defined by
a(f)y)=0y) yel”
BN y)=-z weK"™, yel?
for every integer p. (See e.g. [3, (1.3.3)], [16, Notation (4)].)

For every integer m, we set a morphism
Cm = C(H)[m]” — C(fIm])?

by Cm(z,y) = ((=1)™2,y) for an element (x,y) € C(f)[m]P = KPT™HL @ Lrtm, It is easy to see
that this defines an isomorphism of complexes (,, : C(f)[m] — C(f[m]). Then the diagram

Lim] 22 o) 292 gim 4 1)
H o | [ v (1.3.1)
Lim| —— C(flm]) —— Km+1
] a(flm]) (flm) B(f[m]) | ]
is commutative.
Let
0 K- 19N 0 (1.3.2)
be an exact sequence of complexes, that is,
0 —— kr — L pp 92 4 0

is exact for every p. We define a morphism of complexes
5(f,9):C(f) — M

by sending (z,y) € C(f)? = KPTL & LP to 6(f,g)(z,y) = g(y) € MP. 1t is well known that this
morphism §(f, g) is a quasi-isomorphism. Therefore the diagram

gives us a morphism
v(f,9) : M — K1) (1.3.3)



POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES 149

in the derived category. We can easily check that the morphism
HP(y(f,9)) : HP (M) — HPFH(K)

induced by the morphism (1.3.3) coincides with the classical connecting homomorphism induced
by the short exact sequence (1.3.2).
Because we have a commutative diagram

Mim] 5(f,9)[m] O(hlm] B(f)m] Kim+1]

| o s
5(f[m],g[m m
Mm) S o)y 29D, g 1
by (1.3.1), we have the equality

v(f,9)Im] = (=1)"~y(f[m], g[m]) (1.3.4)

for every m.

1.4. For two integers a,b, we identify two complexes Ka] ® L[b] and (K ® L)[a + b] as follows
(see [3, (1.3.6)]). The morphism

Kla] ® L[b] — (K ® L)[a + b] (1.4.1)
is given by
rRy— (-1)Prey
on the component K|a]? ® L[b]? = KPT* ® L7+*. This gives us the identification expected. For
a morphism of complexes
[ K1 ®@ Ky — K3
the morphism of complexes
fla,b] : K1]a] @ Ka[b] — Ks[a + 0] (1.4.2)
is the composite of the identification (1.4.1) and the morphism
fla+0]: (K1 ® Ko)[a+ b] — Ks[a + b

for every a,b.

1.5. Let K be a complex equipped with an increasing filtration . For an integer m, the exact
sequence

0 —— GtV | K —— W, K/Wy, oK —— Gt K —— 0
induces the morphism
CrV K — Gr)V | K1
in the derived category as (1.3.3). It is called the Gysin morphism of the filtered complex (K, W)
and denoted by v, (K, W). By (1.3.4), we have
’Vm(K[l]aW) = <_1)l'7m(Ka W)[l] (151)

for every .
The morphism

P49y (K, W) - B (G, K) — PP (G, K1) = BPF (Ge, | )
coincides with the morphism

dy : EMY(K, W) — EPTN(K W)
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of the E;-terms of the spectral sequences associated to the filtered complex (K, W) under the
identification EY(K, W) ~ HP+4(Gr" K).

1.6. Let (K,d) be a complex equipped with an increasing filtration W and f : K — K]J1] a
morphism of complexes satisfying the conditions f? = 0 and f(W,,K) C W,,_1K[1] for every
m. Since we can easily check (d + f)? = 0, we obtain a complex (K, d + f) which is denoted by
K’ for a while. The same W defines an increasing filtration on K’. We have the identity

GV K =Gl K’
as complexes for every m. Moreover the morphism f induces a morphism of complexes
Grnm{(f) : Gry‘/,IL/K — Grl/};_l KI1]
for every m. The following Proposition is easy to check.
Proposition 1.7. In the situation above, we have
Y (K" W) = 5n (I, W) + Gy (f)
GV K =GtV K — G K[1] =GV K'[1]
for every integer m.
1.8. Let K, Ko, K3 be complexes. Assume that a morphism of complexes
p: K1 ® Ky — Kj
is given. Then ¢ induces the morphism
HP (K1) @ HI(Ky) — HPT(K3)

for every p,q. This morphism is denoted by HP*9(¢) in this article.
For the case where K7, Ko, K3 carry increasing filtrations W, if the morphism ¢ satisfies the
condition
(WK1 @ WyKy) C WaypKs
for all integers a, b, then the morphism ¢ induces the morphisms
GrZ‘fb @ : GI”ZV Ki® GrXV Ky — Gr}ﬁb K3

for all a and b.

2. CECH COMPLEXES OF CO-CUBICAL COMPLEXES

2.1. Let A be a non-empty set. For a positive integer n, A™ denotes the n-times product set
of A. We set [TA = [[,.qA". We consider A as a subset of [JA. We use a symbol A for an
element of [T A. For an element A € A"! we set d(\) = n.

An element A € A¥*+1 is denoted by

A= (A0),A(1),...,\(k)) € AFF?
more explicitly, and the subset
A0, A1), AR} € A
is denoted by A. We note that |A\| < d(\) + 1 and that the equality holds if and only if all A(z)’s
are distinct. We set
ARFPLO = (X e AP A =k + 1} C AP

for k>0 and [[° A = [[50 A*° C TTA

For an element A € A1 we set

Ai = A0, A1), A — 1), A6+ 1),..., A(K)) € AF (2.1.1)
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for i =0,1,...,k If A € A*¥T1° then )\; € A®° for all i.
We define a map
hi @ AFFE — AT (2.1.2)
for 0 <i <k by
hi(\) () =A@) 0<j<i
for A € A¥*1. Similarly, a map
ti ARFL 5 AR (2.1.3)
for 0 <i <k by
tAG) =AG+1) 0<j<k—i
for A € AFFL,
We trivially have
hy(AR+LeY ¢ AitLe
ti(AFT1o) o AR-itLe
for all i, k.

2.2. For a finite subset A of A, the free Z-module of rank || generated by {ex}aey is denoted
by Z2, that is, we have
7> = P Zen

PYSPN

by definition. By setting
Al

e(A) = /\ZA,
we obtain a free Z-module ()) of rank 1. We note &(}) = Z by definition. There exists the
canonical isomorphism
YA):e(Q)®e(A) — Z (2.2.1)
which sends ex, Aex, A---Aex, ®ex, Aex, A---Aey, to 1. For two finite subsets A, 4 of A with
AN p =0, we define a morphism B

Y1) £() @ (1) — AU ) (222
by x(A, p)(v @ w) = v Aw.
For \ € AFt1° we set
ex = exo) Aexa) A Aeaw) € (),
which is a base of ()) over Z. For a subset p of A with ANy = (), we define an isomorphism
exAe(p) — (AU p)

by sending v € e(u) to ex Av € (AU p). In particular, we obtain an isomorphism

ex\:Z — e(A) (2.2.3)
for the case of p = 0.

2.3. The set of all subsets of A is denoted by S(A). Moreover S,,(A) denotes the set of all subsets
A C A with |A| = n for n > 0. For two subsets A, p with A C g, the inclusion A < p is denoted
by ¢y

The set S(A) admits an order by the inclusion of subsets. We denote by S(A) the category
associated to the ordered set S(A) as in [14, p.14]. The subset of S(A) consisting of all the

non-empty subsets of A is denoted by ST(A) and the category associated to the ordered set
ST(A) by ST(A).
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2.4. Let C be a category. A cubical object in C indexed by the category S(A) (resp. ST(A))
is a contravariant functor from the category S(A) (resp. ST(A)) to C. On the other hand, a
co-cubical object in C indexed by the category S(A) (resp. ST(A)) is a covariant functor from
the category S(A) (resp. ST(A)) to C. A morphism of (co-)cubical objects is a morphism of
functors as usual. We use terminology such as (co-)cubical module, (co-)cubical complex, and
so on, as in the obvious meaning.

2.5. Now we fix a commutative Q-algebra k. Let A be the category of k-modules, or the category
of the k-sheaves on a topological space.
Let A be a non-empty set. For a co-cubical complex K in A indexed by the category ST(A),

we set
cE) = [ K@
AEAR+L0
for integers k,l. An element f € C(K)*! is a collection

f=Frearse HEKQ)
by definition. The morphism 6 = 0k : C(K)¥! — C(K)**+1:! is defined by
k41

S(f)a =D (1)K (tax)(fr)

i=0
for f € C(K)*! and for A € A*+2:° as usual. On the other hand, we define a morphism
9: C(K)M — c(K)MH!
by
Af)x = df

Ky = @ cK)

k+l=p
d=0+(-1)%0
we obtain a complex (C(K),d) in A, which is simply denoted by C(K) for short. Here we follow

the sign convention in [17, p.24]. We call it the Cech complex of a co-cubical complex K. The
construction above is functorial in the usual sense.

for A € A*T1°. By setting

2.6. Let (K, W) be an increasingly filtered co-cubical complex in A indexed by ST(A). Then
increasing filtrations W and 6W on the complex C(K) are defined by

W C(K)M = [ WaK )
A€AktL0
KyP = @ W, )k
k+l=p
EW)mCE) = T WK (A
)\eAkJrlo
(6W)m C(K)? = €D (6W)m C(K)*!
k—+l=p

for every m. We easily see the equality

G e =@ ] Gl KK (26.1)

k>0 AeAR+1.0
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for every m.

For a decreasingly filtered co-cubical complex (K, F) in A indexed by ST(A), we similarly
define decreasing filtrations F' and 0 F on C(K). These constructions satisfy the functoriality in
the obvious meaning.

Lemma 2.7. We have
mCEK), W) =P [] D vmanEQ), W)[—k] + G}, 0
k>0 AeAk+1.0

for every m.

Proof. Applying Proposition 1.7 and the equality (1.5.1), we obtain the conclusion. ([

2.8. Let K, L be two co-cubical complexes in A indexed by ST(A). A co-cubical complex K ® L
is defined by
(K@ L)(A) = K(A) ® L(})
for A € ST(A). For A\, p € ST(A) with A C p, the morphism
(K@ L)(tpa) : (K@ L)) — (K@ L)(p)
is defined by (K ® L)(¢p,n) = K(tun) ® L(tyn). For the case where K and L carry increasing
filtrations W, a a a

W(K@L)(A) = Y WJK(})@W,L()
a+b=m
defines a filtration W on K ® L.
Now, we will define a morphism

7:C(K)®C(L) — C(K ® L),

which is a straightforward generalization of the cup product on the singular cohomology groups
of a topological space in terms of the Cech cohomology.

Definition 2.9. We define a morphism
Tt C(K)PP~F @ (L)l — C(K @ L)kthrta=k=l
by setting
Tra(f @ 9 = K (i ne0) (P ) @ Llea,t,0) (98, 00) € KQA)PF @ L)

for f € C(K)kP=k g € C(L)%97" and for A € AkT+L° where hy and t; are the maps defined in
(2.1.2) and in (2.1.3) respectively.
By setting

T=TK, = Z (_1)(p_k)l7—k,l
k,1>0

we obtain a morphism
7:C(K)? ®C(L)? — C(K ® L)P*4
for all p, q.

The following lemmas can be checked by easy and direct computation.

Lemma 2.10. The morphism 7 defines a morphism of complexzes 7 : C(K)®C(L) — C(K®L).
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Lemma 2.11. For three co-cubical complezes K1, Ko, K3 in A indezed by ST(A), the diagram

T, Ko ®id

C(K1) ® C(K3) ® C(K3) C(K1 ® Ki) ® C(K3)

id ®TK2’K3l lﬁ(l@}(z,KS

C(K1)®C(Ky® K3) — C(K;® K,® Ks)

TK1,Ko®K3

15 commutative.

Lemma 2.12. Let (K, W), (L, W) be co-cubical filtered complexes. Then the morphism T above
satisfies

T(Wa C(K) ® Wy C(L)) © Wayy C(K ® L)
T((6W)a C(K) @ (6W), C(L)) C (6W )1 C(K ® L)

for all a,b. We have the same formulas for decreasing filtrations.

3. RESIDUE MORPHISMS

In this section, we first fix the notation for log deformations. Then we give the definition of
the residue morphism in our case, and prove several results on it. In the last part of this section,
we study the residue morphism for the Koszul complexes of a log deformation.

3.1. Let Y — x* be a log deformation (for the definition, see [8, Definition 2.15], [22, Definition
(3,8)]). We assume that all the irreducible components of the log deformation Y are smooth as in
[8]. The log structure on Y is denoted by My . The morphism of monoid sheaves Ny — My is
induced by the morphism of log complex analytic spaces Y — *. The image of 1 € N =T'(x,N)
by the morphism above is denoted by t € I'(Y, My ).

3.2. We describe the irreducible decomposition of Y by ¥ = (J, ., Ya. We set

Va=[]%

for A € ST(A). Weset Yy =Y. For A\, u € S(A) with A C p, we have the canonical closed
immersion

G'A’H : Yvﬁ — YA (321)

which satisfies the natural functorial property with respect to A and p trivially. The morphism
apy : Yo — Y is denoted by ay for short. We omit the symbol (ay). and (ay ). for complexes
of sheaves on Y and Y) as usual. Then we have

My /Oy = DNy, (3.2.2)
AEA

by definition.

For A\ € ST(A), the induced log structure a} My is simply denoted by My, . Unless otherwise
mentioned, Y} is considered as a log complex manifold with the log structure My, . The log de
Rham complex of Y} is denoted by wy,. The closed immersion ay , in (3.2.1) is a morphism
of log complex analytic spaces for A, u € S(A) with A C p. Thus the data {Ya}aes+(a) form a
cubical log complex manifold indexed by the category ST(A), denoted by Y,.
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We have the morphism aglMy — My, of monoid sheaves. The image of t € I'(Y, My) by
the morphism above is denoted by the same letter ¢ in I'(Y), My, ). We have

My, /Oy, = a;(My/O’{/)
= “il(@ Ny,) = @ Nyyny, = @ NYAUW}’
pnEA pnEA HEA
by (3.2.2). We have the canonical projection
redyA : MYA — MYA/O?A = @NYAU{M}
pHEA

for A € S(A).
For g € S(A), the monoid subsheaf
Y)\ = redy, @Nymw
neo
of My, equipped with the restriction of the structure morphism My, — Oy, defines a log
structure on Y. The complex analytic space Y, equipped with the log structure M)%A is denoted

by Yg According to this definition, My, coincides with M{,\ , and Y) with YA For an element
A € A, we use the notation MY 7Y/\ instead of M{A} Y{A} for simplicity. The log de Rham
complex of Y)\ is denoted by Wy, which is a subcomplex of Wy, in the trivial way. For g,7 € S(A)

with ¢ C 7, we have My v, C MYA, and the inclusion wyg Cwyr as subcomplexes of wy;, .
3.3. For g € S(A), we define an increasing filtration W(c) on wy, by

W(g)mwy, = Image(wy, ®o,, wiil, — wy,)

Yy

for every non-negative integer m. The filtration W (A) is denoted by W for short. The morphism

/\dlog KMgp — wy,

induces a morphism
/\M{g}f ®gz w? A\U — W(@)mwy,

for every p. By composing the morphism above and the projection

W(a)mwy, — GV Wy s

the morphism
/\ MEP ®zw A\a — GV, %

is obtained. We can easily see that the morphlsm above factors through the surjection

A\o —-m
/\Mgg 2wy — /\ (MEP /(M\%)%P) @z e
by the definition of W(g). If m = |J|, we obtain a morphism
e(o )®Zw P — Gry @ Wb (3.3.1)

by using A" (M /(Mg \)°) = &(q).

3.4. We first describe the local case for the later use. So we assume the following:
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(34.1) Y ={x129 - -2, = 0} in the polydisc A™ with coordinate functions z1, s, ..., Zp.
(3.4.2) A={1,2,...,r} and Y, = {z)y =0} for A\ € A.
(34.3) t=w1m0 -z = [[1, @i
Let ¢ = {01,09,...,0,} be an element of S,,(A). For a local section w of wfj}u\”}, the morphism
(3.3.1) sends
oy Negy, No-- Neg, Qw

to the local section
dlogz,, Adlogzs, A--- Adloga,,, A@

~ . . — C . A\o . .
where @ is a local section of wa . whose restriction to YAU\; coincides with w.
N AUg

Proposition 3.5. The morphism (3.3.1) induces an isomorphism of complexes

e(a) ®z wyne[-m] — GrlV(@ (3.5.1)
AUg -

for every g € Sy (A).
Proof. Same as [4, Proposition 3.6]. O
Definition 3.6. For the case of |g| = m, the morphism
Resi wy, — £(a) ®z Wy, [—m]
is defined as the composite of the three morphisms, the projection
wy, = W(a)mwy, — Gr,vnv(g) Wy,
the inverse of the isomorphism (3.5.1), and the morphism

€(Q) Rz wy){\u\l[_m} — E(Q) Qz wYAUg[_m]

induced from the inclusion wy.a\» C wy,,. Note that Res?/A =id.
AUo s A

Moreover we set
g
Resy = Z Resy :wy, — @ £(e) @z wyy. [-m]
gESm (A) g€8m(A)

for every non-negative integer m. Here we remark that the definition of the residue morphisms
above is different from that by Deligne in [5, (3.1.5.2)].

Lemma 3.7. In the situation above, the morphism Resy induces an isomorphism

Gyl wy, — P elo) @z vy, [-m] (3.7.1)
a€Sm(A)

for every m.

Proof. Same as [4, Proposition 3.6]. O
3.8. A global section dlogt of w%ﬁ is obtained from ¢ € I'(Y), My, ). A morphism of complexes

dlog tA : wy, — wy,[1] (3.8.1)

is defined by sending a local section w € cu’;,k todlogtAw € wf,:rl. We can easily see the property

(dlog tA)(Winwy, ) C Wing1wy, [1] for every m. Therefore, for all m, the morphism dlog tA above
induces a morphism of complexes

dlogtA : Grl/ wy, — er[L/H Wy, [1]. (3.8.2)
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Lemma 3.9. We have
Resy, [1](dlogtA)

= (~1)"(id @(dlog tA)[—m]) Res, + > _((exA) ® a0\ 2}, AUU)R%Y}{”
AEo

Wy, — £(0) ®z Wy, [1 —m]
for o € S, (A).

Proof. We may assume the conditions (3.4.1)—(3.4.3) in 3.4. Now we take a subset o = {01,02,...,0m}
of A. For a local section w of wy, , we write

w=dlogz,, ANdlogzs, A--- Adlogz,,, AN

+Y dlogzg, A+ Adlogag, A+ Adlogzs, A+ 7
=1

where dlogz,, means to omit dlogz,, and where n,1; € W(a)owy,,n" € W(a)m—2wy,. Then
we have

dlogt Aw = (—1)™ Z dlogz,, A--- Adlogz,,, Adlogzy An
AEM\a
+) dloga,, Adlogzs, A--- Adlogay, A Adlogz,,, An;
i=1

+ Z dlogzy Adlog sy A -+ Adlogzy, A--- Adlogz,,, An;
AEA\O

+dlogt A1,
and then
Resy, (dlogt Aw) = (—1)™eq, A-- Aeg, ® Z dlogzy A7)
N AeA\o

m
+) o, Neg Ao Nef, A Neg, @1,

Res%/A (W)y=€g, A"+ Neg,, @M
by definition. On the other hand,
Res%i{gi}(w) =€, N ANef, N Neg,, ® ((—1)’”4 dlog xs, A+ m;)
holds for ¢ =1, 2,7. ..,m. Therefore
Resy, (dlogt Aw)

=(=1)"eg, A+ Ney, ® Z dlogzy An
PNSVINN-4

+ Z ey; A ®1d) Resg\{m}( Y+ (—1)"eg, A-Neg, @ Zdlogxgi Am
i=1 i=1

= (-1)"(id ®(dlog tA)[-m]) Resy, (w)

+ (e ® a3 (1) a0s - Res ™ (@)

veo
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is obtained. O

Corollary 3.10. The morphism (3.8.2) is identified with the morphism

EB Z (en\) ® (arugaugu{n})”

aE€Sm (A) pEA\a

P @@, -m— P @) @, [-m]

TESm(A) TE€Smy1(A)

under the identification (3.7.1).

3.11. We recall the definition of the Koszul complexes. Moreover, we will define the residue
morphism of the Koszul complexes of a log deformation, and prove several results on it. The
main reference is [6, Section 1].

For g € S(A), a Q-sheaf Kosy, (My; ;1) is defined as in [6, (2.3)] by

P
KOSYA(M}%A;n)p — Fn—p(OYA) X7z, /\(M}%A)gp (3.11.1)

for non-negative integers n, p with p < n, where the divided power envelope I';, _,(Oy, ) is taken
over the base field Q. By setting

d(fiml el gl gy = Z Frale g ) @ ek (20 1) Am

for integers nq,no,...,ng with ny +ns + - -+ + nx = n — p, the differential
d : Kosy, (Mg ;n)? — Kosy, (Mg ;n)P*!
is defined. The global section 1 of Oy, gives us the morphism
Kosy, (My, ;1) — Kosy, (My;;n +1) (3.11.2)

by sending f @ m to 1M f @ m for f e T,,_ »(Oy,) and for m € \"(M )gp Thus we obtain an
inductive system

- — Kosy, (M ;n) —— Kosy, (Mg ;n+1) —— -+,
and its limit

Kosy, (My, ) = MKOSYA(M}%A; n)

as in [6, Definition 1.8]. By setting

P
w(YbMYA)(fl[nl] il @ my = (2rv/=T) TPl o) T (/\dlog)(m

a morphism of complexes
z/;(YLM%) : KOSYA(M%A; n) — wyg
is defined for every n. These data ¥y, MZ ) for all n induce a morphism of complexes
ATV

Yivag ) Kosy, (MY) — wyp (3.11.3)

as in [6, (2.4)].
For the case of 0 = (), the log structure Mg is nothing but the trivial log structure OY Then

the morphism Qy, — 'y (Oy,) = Kosy, (O3, ;7)° which sends f € Q to (nlf)1M € T, (0y,)



POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES 159

induces a morphism of complexes Qy, — Kosy, (Oik&)' Moreover these morphisms for all n are
compatible with the morphisms (3.11.2). Therefore a morphism of complexes

QYA — KOSYA<O;‘/A) (3.11.4)
is obtained.

Lemma 3.12. The morphism (3.11.4) is a quasi-isomorphism, which fits in the commutative
diagram
Qy, — Kosy, (05,)

l lw@,ow

Cy, —— Qy,,
where the left vertical arrow is the canonical inclusion QYA — (CyA and the bottom horizontal
arrow is the usual morphism induced by the canonical inclusion Cy, — Oy, .
Proof. Easy by definition. O

3.13. For the case of o = A, the global section ¢ of My, defines a morphism of complexes
Kosy, (My,;n) — Kosy, (My, ;n + 1)[1]
by sending f ® m to f ® t A m. This induces a morphism of complexes
tA : Kosy, (My, ) — Kosy, (My, )[1] (3.13.1)
as in [6, (1.11)]. Direct computation shows that the diagram

Kosy, (My,) —2— Kosy, (My; )[1]

vorny) | | rvaT) vy (3.13.2)

wyA _— Wy, [1}

dlog tA =

is commutative.

8.14. For A\, p € S(A) with A C p, the inclusion ay , : Y — Yf induces morphisms of
complexes
ai& : a;}ﬁ KOSYA(M}%A) — Kos;/ﬁ(M%u) (3.14.1)

and
Kosy, (My, ) — KOSYi(M)%“) = (ax )« KosYi(M%“)

in the trivial way. These two morphisms are denoted by the same letter ay, W by abuse of the

notation.

3.15. For ¢ € S(A), the subsheaf (M{}A\Q)gp of ME yields the filtration W((MQA\Q)gp) on
Kosy, (My, ) as defined in [6, Definition 1.8]. This filtration on Kosy, (My,) is denoted by W (o)
in this article. The filtration W(A) is denoted by W. The morphism Py, My,) above preserves
the filtration W (g) for any subset ¢ of A. As proved in [6, Proposition 1.10], we have an
isomorphism of complexes

Gl Kosy, (My,) = £(0) 97 03 3., Kosy, (M35 %) (-] (315.)

for every integer m.
We have the inclusion

_ A _
ag,lgug KOSYA(MYA\Q) — aéyiug Kosy, (My,)
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induced by the inclusion Mg\z C My, . Therefore we obtain the morphism

e(o) ®z a;}AUz KOSYA<M¢A\2)[—’H’L] — e(o) ®z a;,lqu Kosy, (My, )[—m] (3.15.2)

by tensoring the identity and by shifting.
On the other hand, we have the canonical morphism (3.14.1)

a3 auo a;,lqu Kosy, (My, ) — Kosy, , (My,,,)
for \,a € S(A). Thus the morphism
id®aj \uo[—m] : e(a) ®z a;’léug Kosy, (My, )[—m)] (3.15.3)
— () ®z Kosy, ,, (My,,, ) [-m]
is obtained.
Definition 3.16. For ¢ € S,,,(A), the equality
W(a)m Kosy, (My,) = Kosy, (My,)
can be easily seen. Then the composite of four morphisms, the projection
Kosy, (My, ) = W (@), Kosy, (My, ) — Grl¥ (@ Kosy, (My,),
the isomorphism (3.15.1), the morphisms (3.15.2) and (3.15.3), is denoted by
RGS%A : Kosy, (My, ) — ¢(a) ®z Kosy, , (My,_, )[—m]

by abuse of the language. Moreover we set

Res’{& = Z Res%,A : Kosy, (My,) — @ e(g) ®z Kosy, ,, (My,, )[—m]
g€Sm(A) gE€Sm(A)

as in Definition 3.6 again.

Lemma 3.17. The morphism Resy’ induces a quasi-isomorphism
Resy; : G Kosy, (My,) — @ (o) ®z Kosy,, (05, . )[-m] (3.17.1)
o€Sm (A)

for every m. In particular, we have an isomorphism

Gr)) Kosy, (My,) — EB e(o) ®z Qy,,, [-m] (3.17.2)
gE€Sm(A)

in the derived category for every m.

Proof. We have an isomorphism
w — *
Gr,, Kosy, (My,) — @ e(o) ®z aéiug Kosy, (O3, )[—m]
Zesm(A)
as in the case of wy,. We can check that the canonical morphism
aLlAUz Kosy, (O;‘/A ) — Kosy, ((9’{/&1)

is a quasi-isomorphism. Thus the morphism (3.17.1) is a quasi-isomorphism. Combining with
the quasi-isomorphism (3.11.4) for A U g, we obtain the isomorphism (3.17.2). See [6, Section 1]
for the detail. O
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Lemma 3.18. For a non-negative integer m, the diagram

K2
Resy

KOSYA(MYA) —A> &‘(Q) KRz, KOSYAUQ(MYAUQ)[_m}

—mn

¢(YA,MYA>l lid®(27r\/jl)

w(YAUg‘MYAUU)[_m]

Wy, — E(Q) X7 WYru, [_m]
- Res?A -

is commutative for every g € Sy, (A).
Proof. Easy by definition. O

Lemma 3.19. We have
Resy, [1](tA)

= (—l)m(ld ®(t/\>[_m]) RGS%A + Z((eu/\) & aiu(g\{y}%AUz) Res%/;{y}

veo

: Kosy, (My, ) — e(g) ®z Kosy, , (My,,,)[1 —m]
for g € Sp(A).

Proof. Similar to the case of the log de Rham complex wy, in Lemma 3.9. O

4. GYSIN MORPHISMS

In this section, we fix the notation on the so called “Gysin map”. Because the signs of objects
in the cohomology groups are crucial for our computation, we start with the well-known objects
and fix the signs explicitly.

4.1. Let X be a complex analytic space equipped with a log structure Mx. For the log de Rham
complex wx of a log complex analytic space X, we set an increasing filtration W by

Wnwk = Image(wy ®o, O™ — k)
as in 3.3. Then we have a morphism
Ym(wx, W) : Cr¥ wx — GrlV | wx[1]

in the derived category as in 1.5. We use the symbol v,,(X, Mx) instead of v, (wx, W). We
sometimes drop the subscript m, if there is no danger of confusion.

4.2. First, we recall the simplest example. Let X be a complex manifold and D a smooth
hypersurface in X. The log structure Mx (D) associated to the divisor D is equipped to X. In
this case, the log de Rham complex wy is nothing but Qx (log D), and the increasing filtration
W coincides with the usual weight filtration on Qx (log D) in [4]. Then we have

Gry Qx(log D) = WoQx (log D) = Qx

by definition. Moreover we have W12 x (log D) = Qx (log D) because D is smooth. We have the
residue isomorphism of complexes

Resy : Grl¥ Qx (log D) — Qp[—1],
by which we identify Gr}/v Qx(log D) and Qp[—1]. Thus we obtain the morphism
V(X, D) =y(X,Mx(D)) : Qp[-1] — Qx[1]

in the derived category.
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Proposition 4.3. In addition to the situation above, we assume that X is compact. Then we
have the equality

/Hp+1(X,7(X,D))(a)Ub:7(27rﬁ)/ aU (blp)
X D

for any a € H?(D,Qp) and b € H24mX=2=P(X ).
Proof. See Griffiths-Schmid [10, §2 (b)]. O

4.4. Let Y — * be a log deformation. As defined in 4.1, we have the morphism
Y (Ya, My, ) = Gry wye — Gy wye[l]
in the derived category for A,g € S(A). In particular, the morphism
v(Ya, M;‘A) : Gr¥V wyp — Grgv Wy [1] = Qy, [1]
is obtained for A € A. By the identification
Dyaoiny [P 2 (V) ®2 Qyy o, [F1] = Gry wy
we obtain a morphism
Wy o 21— O (1]
in the derived category. We have
= Y(Ya, YAU{A}) (4.4.1)

for A ¢ A

The following proposition is very similar to [16, Proposition 4.3, Proposition 4.5]. However, we
restate it for the completeness, because our definition of the residue isomorphism are different
from Nakkajima’s. Here we only give a sketch of the proof because it is almost the same as
Proposition 4.5 in [16].

Proposition 4.5. For a positive integer m, the morphism
Y (Yo, My, ) - er wy, — Gry,[;_l Wy, [1]

is identified with

EB Z(el//\)_l WX [ —m]

gE€ESm(A) vED

P @, -m— @ @)@z, 2 m]
oE€Sm (A) TESm—1(A)

under the isomorphism (3.7.1), where e, A\ denotes the isomorphism e(ac\{v}) — &(a) in (2.2.3).

Proof. The canonical inclusion Wye = Wy, induces the commutative diagram

0 —— Grnvf,lwyi —_— meyf/Wm,gwyf — GrY¥ wyg —— 0

l ! |

0 —— Ca‘:r,V,‘LCl(,uyA —_— meYA/Wm,ngA — Gr}fnv wy, —— 0
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with exact rows for ¢ € 5,,,(A). Thus the restriction of 7., (Yx, My, ) on the direct summand
e(a) ®z Qy,,, [~m] under the identification (3.7.1) coincides with v, (Yy, My; ) under the iden-

tification Grnvg wyg ~ e(o) ®z Qy,,, [-m]. For 7 € Sp_1(a), Res%,A induces the commutative
diagram

0 —— Gryy_, Wyg _— meYAg/Wmfgwykg —_ Gry wy —— 0

| | N

0 —— e(7) ®z QYAUQH —m] —— e(7) ®z wy, :[1 —m] —— e(7) ®z QYAUZ[—m] — 0

Xu
with exact rows, where ¢ \ 7 = {v}. Then we have

Resy, [vm (Ya, My,) =(=1)""'x(z. {1}) 7" @y

AuT

e(a) ®z vy, [=m] — (1) @z Ny, [2 — M)

by using (1.5.1). Because of x(7,{r}) = (—1)™ 'e,A under the identification e(v) ~ Z, the
conclusion is obtained. (|

5. COMPARISON BETWEEN A AND K

In this section, we first recall results in [6] and adjust them to the case of a log deformation.
The definition and the notation are slightly changed from that in [6]. In addition to this change,
the method in Section 2 is used instead of the simplicial method in [6] because it can work
without fixing the total order on the index set. After recalling the results in Steenbrink [22],
Fujisawa-Nakayama [8] briefly, we construct a morphism from Steenbrink’s cohomological mixed
Hodge complex to the complex in [6].

5.1. Let Y — * be a log deformation. We assume that
(5.1.1) Y has finitely many irreducible components

in the remainder of this article. Then the index set A of the irreducible components of Y is a
finite set. This assumption does not affect to our main results because we are interested only in
the case where Y is compact.

5.2. Fix an element A € S(A). A morphism
Vi Clu] ®c wy, — Clu] ®&c wf,il
is defined by

~1d
V =id@d + (2rv=1) " 2 @ dlogtn
for a non-negative integer p, where dlog tA is the morphism (3.8.1). We can easily see the equality
V2 = 0. Thus we obtain a complex of C-sheaves on Y}, which is denoted by (Clu] ®@c wy,, V) or
simply by Clu] ®c wy,. A morphism of complexes

Wy, — (C[u] Ac Wy, (5.2.1)

is induced by the natural inclusion C — C[u]. We consider wy, as a subcomplex of Clu] ®c wy;
by the inclusion above.
By using the identity
Clu] ®@c wy, = @) Cu" ®c wys,
r>0



164 TARO FUJISAWA

the weight filtration W and the Hodge filtration F' on Clu] ®c wy, are defined by

Wm ((C[U] &c WYA) = @ Cu” Qc Wm72erA
r>0
FP(Clu] ®c WYA) = @ Cu" ®@c¢ Fp—erA
r>0
for every m, p, where I on wy, denotes the stupid filtration as in [5, (1.4.6)]. It can be easily
seen that the filtrations W and F' are preserved by V. Thus we obtain a bifiltered complex
(Clu] ®c wy,, W, F).
By setting

Tear(P(u) ©w) = ——(0) ® w,

du”
a morphism
mear : Clu] ®c wy, — wy

is obtained for every non-negative integer r. Note that mc ), does not define a morphism of
complexes. We have

7 ar (Wi (Clt] @ W) € Winarwly
mear (F4(Clu] ®c wy,)) € F7wh
for every m, q. It is easy to see that
Gry, mear (G (Clu] @c wyy ), F) — (G o, wyy, FI=7])

defines a morphism of filtered complexes, although the morphism ¢ ), is not a morphism of
complexes. Moreover, the morphism of filtered complexes

masx ¢ (Clu] @c wyy , F) — (wyy /s, F)

L . . . .. » »
is given by composing the morphism 7¢ » 0 and the canonical projection Wy, — Wy, /-

5.3. We have a complex
Q[u] ®q Kosy, (My, )
with the differential
V:id®d+i®t/\,
du

where tA is the morphism defined in (3.13.1). Moreover, an increasing filtration W on Q[u] ®g
Kosy, (My,) is defined by

Wm(Q[u] 290) KOSYA(MYA)) = @ Qu” R W —or KOSYA(MYA)
r>0

for every m.
We define a morphism

QA : Q[u] (90 KOSYA(MYA)Z) — KOSYA(MYA)Z)

by substituting 0 for the variable u as in the case of ¢ 0. Note that mg ) is not a morphism of
complexes. It is clear that mg ) preserves the filtration W and induces a morphism of complexes

Gr,‘f{ TQ\ Gr,‘f{ (Q[u] ®q Kosy, (My,)) — Grnvg Kosy, (My,)

for every m.
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5.4. We have the morphism of complexes
a0 = V(v My,) Kosy, (My, ) — wy,

defined in (3.11.3).
Tensoring with the canonical inclusion Q[u] — C[u] with the morphism )y, | My, )» We obtain

a morphism

1/1& : Q[u] [2%0) KOSYA(MYA) — (C[u] Kc Wy,
for every A\. The commutative diagram (3.13.2) tells us that the morphism ), is a morphism of
complexes.

5.5. The construction in 5.1-5.4 is functorial with respect to the morphisms induced from the
canonical inclusion Y,, C Y, for A C p. Thus we obtain the corresponding co-cubical objects
over the cubical log complex manifold Y,.

Then we obtain the filtered co-cubical complexes of Q-sheaves

(Kosy, (My,), W),  (Q[u] ®g Kosy, (My,), W),
the (bi)filtered co-cubical complexes of C-sheaves
Wy, /e, F), (wyy , W, F),  (Clu] @c wy,, W, F)
and the morphisms
Vo0 (Kosy, (My,), W) — (wy,, W)
Ve 1 (Qu] ®g Kosy, (My, ), W) — (Clu] ®c wy,, W)
7Q,e : (Qu] ®g Kosy, (My, )", W) — (Kosy, (My, )", W)
7o ¢ (Clu] ®c Wiy, W, F) — (wy, , W[2r], F[—1])
To/x + (Clu] ®c wy,, F) — (wy, /s, F)
on Y,. So we obtain the filtered complexes of (Q-sheaves
(C(Kosy, (My,)),0W),  (C(Q[u] ®q Kosy, (My,)),sW)
and the (bi)filtered complexes of C-sheaves
(Clwy, ) ), (Clwy,), W, F),  (C(Clu] ®@c wy, ), W, F),
on Y asin 2.5 and 2.6. We set
(Ko, W) = (C(Qu] ©g Kosy, (My,)), W)
(K¢, W, F) = (C(C[u] @c wy, ), 0W, F)
for short. Moreover the morphisms of filtered complexes
Yo = C(¢e0) : (C(Kosy, (My,)), W) — (C(wy, ), 0W)
P =C() : (Ko, W) — (K¢, W)
Ty = C(Tays) : (K, F') — (Clwy, /4), F')
are obtained. Moreover, C(wy,) is considered as a subcomplex of K¢ by the inclusion (5.2.1).
5.6. The morphisms mg,e and 7c,e , induce morphisms
7o = C(nga) : (KB, W) — (C(Kosy, (My,))",0W)
Tew = Clncar) : (KB, W, F) — (Clwy, )", W21, F[-1])
for every p, which induce a morphism of complexes
CrY g - GV Ko — Gr?% C(Kosy, (My,))



166 TARO FUJISAWA

and a morphism of filtered complexes

Gryy me, o (Gryy Ko, F) — (Gri)Y, Clwy, ), F[—1])

for every m,r. We have the commutative diagram

w Gy w
Grm KQ E— GI‘m K¢
Gry/ m,ol lerfx mc,0 (5.6.1)
GrW C(Kosy, (My,)) ——— Gr% C(wy,)
GV 4o

for every m.
5.7. For an element A € A, the morphism
aj Wy — Wy,
can be regarded as a morphism wf — C(wy, )" C C(wy, )? for every p. We set

* _ * . D
a5 =y ai:why — Clww,)",
AEA

which induces a morphism
aj : (wy, W, F) — (C(wy, ), W, F)

of bifiltered complexes. The composite of af and the canonical inclusion C(wy,) — K¢ is
denoted by a*. Thus a morphism of bifiltered complexes

a*: (wy, W, F) — (K¢, W, F)
is obtained. Then the equality aj = mc,0a* holds by definition. A morphism of filtered complexes
aj, t Wy, F) — (Clwyys), F) (5.7.1)
is defined by the same way.
Morphisms of filtered complexes
aj - (Kosy (My), W) — (C(Kosy, (My,)), 6W)
a* : (Kosy (My), W) — (Kq, W)

are defined similarly. Then the diagrams

KOSY (My) M wy KOSY (My) w(Y,MY) Wy
asl las a*l la* (5.7.2)
C(KOSY. (MY. )) 1/;—> C((UY.) KQ T K(C
0

are commutative.
Definition 5.8. We set
(Ka VVv F) = ((KQ’ W)v (K(Cv Wa F)7w)
and
(Hq(}/a K)a VV, F) = ((Hq(}/? K@)? W)? (HQ(Y’ K(C)v Wa F)) Hq(Y7 1/)))’

for an integer q.
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Theorem 5.9. For a log deformation Y — %, the morphism a?* in (5.7.1) is a filtered quasi-
isomorphism with respect to the filtrations F' on both sides. Therefore the morphism aj* induces
an isomorphism

HY(Y,a},) : HY(Y,wy,.) — HY(Y,C(wy, /+))

for every integer q, under which the filtrations F' on both sides coincide.
If we assume the following conditions

(5.9.1) Y — x is proper, that is, Y is compact,
(5.9.2) all the irreducible components Yy are Kdhler complex manifolds
in addition, then we have the following:

(5.9.3) The morphism =, induces an isomorphism H1(Y, K¢) — HI(Y,C(wy, /)) for every
integer q, under which the filtrations F' on both sides coincide.

(5.9.4) The data (H1(Y, K),Wlq|, F) is a mized Hodge structure for every integer q.
(5.9.5) The spectral sequence EP'9(K¢, F) degenerates at Ey-terms.
(5.9.6) The spectral sequences E?9(Kq, W) and EP9(Kc, W) degenerate at Eo-terms.

Proof. We can deduce the conclusion from [6] by fixing a total order on A. O

Remark 5.10. Here, we recall several isomorphisms for the later use. We note that we can use
Drcnriro instead of []ycpri1,0 by the assumption (5.1.1).
For the complex C(Kosy, (My,)) we have the isomorphism in the derived category

Gy C(Kosy, (My,)) = €D Gry g Kosy, (My,)[—d(N)]
AeJT° A

(5.10.1)
~ @ @ e(a) ®z Qy,, [=m — 2d(N)]
METI° Ag€Smpany(N)
by (2.6.1) and by (3.17.2). For C(wy, ), we have the isomorphism of complexes
G Clov) = D Grlaey wra[=d(V)]
XeTT° A
Il (5.10.2)

~ P B clo) ®z U, [-m—2d(N)]

AE[I° Ag€Smypanny(A)

by (2.6.1) and by the residue isomorphism (3.7.1). Under the identifications (5.10.1) and (5.10.2),
the morphism Gr,VX 1 coincides with the morphism induced by the inclusion

(271\/—1)_m_d(/\)L :Q —C

on the direct summand (o) ®z Qy,,, [-m — 2d(\)] by Lemma 3.12 and by Lemma 3.18.
Similarly, we have the isomorphism in the derived category

GV Ko = @ EB Qu" ®q Gryy 4 g2, Kosy, (My,)[—d(N)]
r>0 XeJ]° A

~ ED @ @ e(g) ®z Qv,, [—m — 2d(X) + 27]

r20 Ae[[° A g€Smta(n)—2-(A)
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and the isomorphism of complexes

Gyl Kc =) € Cu" ®c Gr),yiny o wya[—d(N)]

>0 Ae[]° A

~PB P D )@, m—2d0) + 2]

r>0Ae[[° A g€Sman)—2r(A)

as above. Lemma 3.18 tells us that the morphism Gr (U Gr Ko — Gr K¢ is identified
with the morphism induced by the inclusion

(ZW\/—l)Qrfd(A)imL :Q—C
on the direct summand £(o) ®z Qy,,, [-m — 2d(A) + 2r].
5.11. Now we compare the Gysin morphisms of K¢ and of C(wy,) for the later use. For this
purpose, we introduce a new complex.

The morphism
id®d : Clu] ®c wy, — Clu] ®c pr

yields a complex (Clu] ®c wy, ,id ®d) for every A. Thus we obtain a co-cubical complex (Clu] ®¢
wy,,id®d). We set L = C(Clu] ®c wy,,id ®d) for a while. The complex L carries the filtration
W and F by the same definition for K¢. Then we trivially have (Gr)y L, F) = (Gr)) K¢, F) for
every m. Moreover, the morphism 7¢ , defines a morphism of bifiltered complexes
me (LW, F) — (C(wy, ), 6W [2r], F[-])
for every r > 0.
The morphism

(_1)kdiflu ® dlogtA : Clu] ®c wf,;k s O] ®c wyj_l &

for A € A**1° induces morphisms of bifiltered complexes
(L,W,F) — (LA], W], F), (Kc,W,F) — (Kc[1], W[1], F)
which are denoted by C(d/du @ dlogtA). Similarly, morphisms of bifiltered complexes
C(id®dlogtA) : (Kc, W, F) — (K¢[1], W[-1], F[1])
C(dlogt) : (Clwy, ), W, F) —> (Cleoy )[1], 6W[-1], F[1])
are induced by the morphisms
(=1)*id @ dlog tA : (C[u] ®c wf,_k — Clu] ®c wY+1 K
(=1)k dlog tA : wy, — wf,:rl 4§
for every A € A¥*t1:° and for every p.
We have the equality

e, [1] C(% @ dlogtA) = C(dlog tA)me ri1 (5.11.1)
by definition.
Lemma 5.12. We have
Y (K, W) = ym (L, W) + (27r\/7) <% ® dlogt /\)

for every m.
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Proof. By Proposition 1.7. O
Proposition 5.13. We have
Gryy—1 e, [y (Kc, W)
— Yar (Cwy,), W) G e, + (2mv/=T) " GEY o,y C(dlog tA) Gall ey
for every m,r.
Proof. We obtain
Gry_1 7 [1ym (L, W) = Yim—2r(Clwy, ), 6W) Gry)/ 7e,

by the functoriality of the Gysin morphism. Then we obtain the conclusion by (5.11.1) and by
the lemma above. O

Definition 5.14. For A € A*+1° and for ¢ € S,,,44(A), a morphism
(A, o) : G2V C(wy,) — e(0) @z Qy, o, [—m — 2K]

is defined as the projection onto a direct summand under the identification (5.10.2). In particular,
we have a morphism

Io(A) = Ho(A\ A) : Gr" Clwy,) — e(A) @z Qy, [-1 — 24]

for A € AFT1o. We set

Oc,0(N) = ((ean) ! @ id)IIp(N) : Gri™ C(wy, ) — Qyy [~1 — 24] (5.14.1)
for every A € A*+1° where eyA is the isomorphism (2.2.3). Moreover a morphism

Oc(N) : G} K¢ — Qy, [~1 — 2k]

is defined by O¢(\) = Oco(A) Cr} e g, for A € AF+Le,
Lemma 5.15. In the situation above, we have

Oc(N)[2] GrlY ¢(id @ dlog tA)[1]y (Ke, W)

= 0c,0(N)[2)Gry" C(dlog tA) 1 (C(wy, ), dW) Gri¥ me o

for X € Aktle,
Proof. Easy by Proposition 5.13. O
5.16. The morphism
< ®1id : Clu] ®c wy, — Clu] ®c wy,

du
induces a morphism of complexes

d

— ®id: Kc — K(C,
du

which satisfies the conditions

d .
(% & ld)(WmK(C) C Wm—QK(C

d
(@ ®id)(FPKc) C FP~' Ke
for every m, p. Similarly, the morphism

% ®1id : Q[u] 090) KOSYA(MYA) — Q[u] (2%0) KOSYA(MYA)
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induces a morphism of complexes

d
%Q@id:KQ—)KQ,

which satisfies the condition

d .
(()Tu ® 1d)(WmK@) C Wp—2Kg

for every m as above. Trivially, these morphisms are compatible with ¢ : Ko — K¢. Thus the
morphism d/du ® id induces a morphism

d
HO(Y, = @ id) : (HO(Y, K),Wg], F) — (HI(Y, K),Wq +2], F[-1) (5.16.1)
for every ¢, denoted by Nk for short.

5.17. We recall results in Steenbrink [22] and in Fujisawa-Nakayama [8], which are analogues of
results in Steenbrink [21] from the viewpoint of log geometry.
We set

Al = @w{}“/Wrwffl
r>0
for every p. The morphism dlog¢A in (3.8.1) induces a morphism
dlog tA : wf,H/Wrwf,H — w{}”/WTﬂwfo C A%é“

for every p,r. By setting

d=ED(~d - dlogtA) : AL — AL,

r>0

we obtain a complex of C-sheaves Ac on Y. The weight filtration W on Ac is given by

Wi AL = @D Wi o 1wt/ Wowh ™

r>0
for every m, and the Hodge filtration F' by
P @ e
0<r<p—n

for every n.
We set
A%é = @ KOSY (My)p+1/Wr KOSY (My)p+1
r>0

for every p. The morphism ¢A in (3.13.1) induces a morphism
tA : Kosy (My )P+ /W, Kosy (My )P+ — Kosy (My )P™2 /W,y Kosy (My )P 2 C AR

for every p,r. By setting
1
d=@P(—d—tn): AL — ABT,
r>0
we obtain a complex Ag. The weight filtration W on Ag is defined by
Wi AL = @D Wi 2011 Kosy (My )P+ /W, Kosy (My )7+
r>0

for every m.
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We can easily check that the morphism (27T\/—1)T+1¢y : Kosy (My) — wy induces a
morphism of filtered complexes

o=@ (rv=1)"" vy : (Ag, W) — (Ac, W)
r>0

by using the commutative diagram (3.13.2).

Definition 5.18. We set
(AW, F) = ((Ag, W), (Ac, W, F), )
and
(Hq(Y7 A)y VV7 F) = ((Hq(Y7 AQ)7 W)) (Hq(}/a A(C)7 Wa F)7 Hq(K Oé))

for every gq.

Remark 5.19. The signs in the definition of the differentials above are different from that in
[22], [8]. Moreover, the Q-structure Ag above is slightly different from the ones in [22], [8]. We
can prove that the above Q-structure induces the same Q-structure as the ones in [22], [8] on
the cohomology groups. However, we will not give the proof here because we do not need this
fact in this article. What we need in this article is Theorem 5.21 below.

5.20. The composite of the morphism

) +1
dlog tA @ wy, — Wi

and the projection w?™ — W /W™ can be regarded as a morphism

1 1
0:wh — W Wowhtt c AR
for every p. It is easy to check that this morphism defines a morphism of complexes, which is

denoted by ¢ : wy — Ac. The morphism 6 factors through the surjection wy — wy,. Thus
a morphism of complexes 6/, : wy,, — Ac is obtained.

Theorem 5.21. In the situation above, the morphism 0, : (wy,., F) — (Ac, F) is a filtered
quasi-isomorphism. Therefore the morphism

Hq(Y7 9/*) : Hq(Y,wy/*) — Hq(Y, A@)

s an isomorphism for every q, under which the filtrations F' on both sides coincide.
If we assume the conditions (5.9.1) and (5.9.2), the data A is a cohomological mized Hodge
complex on Y. In particular, (HY(Y, A), Wlq|, F) is a mized Hodge structure for every q.

Proof. By Lemmas 3.7, 3.17, and 3.18, the same proof as in [22], [8] can work. O
Remark 5.22. We have an isomorphism in the derived category

GrY Ag = @ Gr,vg_s_%_‘_1 Kosy (My)[1]

r>max(0,—m)

(5.22.1)
~ @ @ e(o) ®z ng[—m — 27]
r>max(0,—m) c€Sm42r+1(A)
and the isomorphism of complexes
GrYnV Ac = @ GrTVV[L/—i-Zr—O—l wy [1]
r>max(0,—m
Zmax(0:=m) (5.22.2)

~ @ @ £(a) ®z Qy, [-m — 2r]

r>max(0,—m) 0E€Smi2r+1(A)
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as in Remark 5.10. Under these identification, the morphism
GrYa:Gr)V Ag — Gr)Y Ac
is identified with the morphism whose restriction on £(¢) ®z Qy, [-m — 2r] coincides with the
morphism (QW\/—il)fmer :Q —C.
5.23. As in Steenbrink [22, (5.6)] a morphism of bifiltered complexes
c: (Ag, W, F) — (Ac, W[2], F[-1])

is induced from the projection pr/WT P, wY /VVTwa,+ for r > 0.
Similarly, the projection

Kosy (My )P /W, Kosy (My )P — Kosy (My )P™ /W, 1 Kosy (My )P+

induces a morphism of filtered complexes vg : (Ag, W) — (Ag, W][2]) as above. Since the
diagram

AQ &) AQ
A(C EE— A(C
(2mv=T)we

is commutative, the pair of the morphism
v = (g, (271'\/7)%;) (A, W, F) — (A, W]2], F[-1])
induces a morphism
N = HO(Y, v) : (HO(Y, A), W[q), F) —> (HI(Y, A), W[ + 2], F[-1])
for every gq.

Next, we will define morphisms of complexes Ag — Kg and Ac — K¢ which play an
important role in the remainder of this article.

Definition 5.24. We set
Resy = ((ean) ! @1id) Resg\*/ Pwy — wy, [—A]

for an element A € J]° A.
Because the morphism Resﬁ‘/ sends W,wy to zero for r < d(\), a morphism

ulfM = @ Resy : Wl /W, — Clu] ®@c wy, N« kP
is induced, where we set ul®l = u™ /n! for a non-negative integer n. Then we set

oc = @ Z 1)d) QWF)d(A) "ultM = @ Resy. : AL — K2

>0 Ae[T° A
d(A)>r

for every p.

Lemma 5.25. The morphism oc above defines a morphism of complexes preserving the filtra-
tions W and F.
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Proof. Since it is easy to check that ¢ preserves the filtrations W and F', it suffices to prove
that ¢ is a morphism of complexes.
For any A € []° A, the equality

Resy d = (—1)¥ Mg Resy (5.25.1)

can be easily checked by definition. Moreover, we can easily see the equality

d(\)
Resy dlogtn = (—1)¥ M+ (dlog tA) Resy + Z(—l)ia&& Resy’ (5.25.2)
=0

as morphisms from w}, to wY p=d(}) by Lemma 3.9.

We write the differentials of the complexes K¢ and Ac by dx and d4 and the projection
= P Clulocwy ™ — Clu) @ Wi ™
AeJT° A

by pry for a while. In order to prove that y¢ is a morphism of complexes, it suffices to prove
the equality

pry dxpc = pry pcda : Az — Clu] @c wgﬂ ) (5.25.3)
for any A € [[° A. By the definition of the differential of the Cech complex in 2.5, we have

d(\)

prydix = Z(_l)ia&,g PIy, +(—1)"™ (id ®d) pr,,
i=0

+ (- ((2rv=1) " - ® dlog tA) pry,
where \; is the element [J A defined in (2.1.1). On the other hand, we have
Pry <P<C|w§+1/w

_ [0 rym) T g Resy () 2 v
o d(\) <r

for a non-negative integer . Take r > 0 and A € [[° A with d(\) = k. If k > r + 1, we have

k
7 k—r—1 —r— * i
pry, dK(pC|wf,+l/Wrw§’,+l = Z(fl)’“r (2rv-1) kg (ax,x Res}?)
i=0

+ (2ﬂx/jl)kfru[k4] ® (dResy)
+ (27r\/—;1)k471u[k_r_1] ® (dlogt A Resy)
by using d(A;) =d(A) — 1=k —1, and
pry ‘PCdA|w§+1/WTw§“ = (_1)k(277\/_71)k_7lu[k_r] ® (Resg\/(—d))
+ (—=1)* (27r\/—;1)kfrflu[k”_1] ® (Resy (— dlog tA))
— (=) (2rv=1)""ul" " @ (Res} d)
+ (—1)kHt (2w¢j1)k_T_1u[k_T_l] ® (Resy dlogtA)
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because (dlog tA)(wWh ™ /W) € WP /W4 1wP" Then we obtain (5.25.3) by (5.25.1) and
by (5.25.2). If k = r, we have

Pry dKSDC‘W€/+1/WTw€+1 = ul” ® (dResy)
by d(\i) =k — 1 <7 and by (d/du)ul® = 0. On the other hand,
pry peda = (—1)* 1l @ (Resy d)

because (dlog tA)(wht! /W) € Wb /W, 1wl t? again. Thus we obtain (5.25.3) by (5.25.1).
If k < r, we have

prydirpc = pry pcda =0
by definition. Thus we obtain (5.25.3) for any A € [[° A. O
Definition 5.26. We set
Resﬁ‘, = ((exN) "' ®1id) Res%/ : Kosy (My) — Kosy, (My, )[—|Al]

for an element A € [[° A, and

0o = @ Z 1)4N 4N =11 @ Resy, A — K
r>0 Ae[]° A
d(A)>r

for every p. By Lemma 3.19, ¢q is a morphism of complexes as in the case of ¢, which also
preserves the filtration W.

Lemma 5.27. The diagram
Ay —2 Ko
! v
Ac — Kc
18 commutative.

Proof. Lemma 3.18 implies the conclusion. (I

Definition 5.28. The pair (¢g, ¢c) is abbreviated as
p:A— K
and the pair (HY(Y, ¢q), H{(Y, ¢c)) as
HY(Y, @) : HY(Y, A) — HY(Y, K)
for simplicity.
Theorem 5.29. If a log deformation Y — « satisfies the conditions (5.9.1) and (5.9.2), then
HI(Y, ¢) : HI(Y, A) — HY(Y, K)

s an isomorphism of mized Hodge structures for every q.
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Proof. Tt is clear that HI(Y, ¢) is a morphism of mixed Hodge structures. Therefore it is sufficient
to prove that the morphism HY(Y, ¢c) : HY(Y, Ac) — H4(Y, K¢) is an isomorphism. Lemma
3.9 implies that the diagram

*

wy/* L) C(UJY./*)
0/*1 TW/*
AC —_— KC
pc

is commutative. The morphisms H?(Y, a}*), HY(Y, 7/,) are isomorphisms for every ¢ by Theorem
5.9 and the morphism H?(Y,6,,) is an isomorphism for every ¢ by Theorem 5.21. Therefore the
morphism H?(Y, ¢¢) is an isomorphism for every g. (I

Corollary 5.30. In the situation above, the morphism ¢ induces filtered isomorphism
qu((ﬂ(c) : (Eg’q(A(QW)vF) = (qu(KC?W)’F)

for every p, q.

Proposition 5.31. The diagrams

A(c L} K¢ AQ &) KQ
(2mv=T) ucl l%@id u@l lﬁ@id
AC — K¢ AQ E— K@
ec #q

are commutative. Therefore the morphism N4 and Ny are identified under the isomorphism
HY(Y, ¢) in Theorem 5.29.

Definition 5.32. We set
wc,o = mcopc : (A, W, F) — (C(wy, )P, 0W, F)

for every p. It does not define a morphism of complexes. However it induces a morphism of
filtered complexes
Grnm; YC,o (GrTVZ Ac, F) — (GréW Clwy,), F)

m

for every m. Explicitly, we have

peo=(=1" 3 ((exn) @id)Resy sl /Wl — @D Wl Y =Cloy,)?

AEATHL0 A€[TA

on the direct summand w{’,ﬂ / I/erf,Jrl for every r > 0.

6. PrRoDUCT
6.1. Let Y — * be a log deformation satisfying condition (5.1.1). By sending
(Clu] @c W, ) @c (Clu] @c W) 3 (Pu) ®w) & (Q(u) & 1)

to
P(u)Q(u) ® w An € Clu] ®c wf,zq

we obtain a morphism

(Clu] ®c wy,) ®c (Clu] ®c wy, ) — Clu] ¢ wy,,
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denoted by the same letter A. In fact, it is easy to check that the morphism A is a morphism of
complexes. Thus the morphisms of complexes

A Wy, Kc Wy, — Wy,
N Wy, /x OC Wy, /+ — Wy, /«
A+ (Clu] ®c wy,) ®c (Clu] @c wy, ) — Clu] ®c wy,

are obtained. For these three morphisms, the images of W, @ W, (resp. F'* ® F°) are contained
in Woyp (resp. FP) by definition. These morphisms are compatible with the morphisms
TC,A,05 Ta/+ and with the morphism induced from the inclusion Y, C Y, for A C p.

6.2. Now we consider the case of the Koszul complex. We take local sections
fl[il]f2[i2] o flgzk] Qe KOSYA(M}%Q n)p’ ggjﬂgyﬂ L gl[jl] ®y € KOSYA(M)%Q m)q

respectively, where

p q
flaf?a"'afkaglaQQa"'glGOYAa xe/\(M)%A)gp7 ye/\(M}%A)gp

and 41,12, . ..k, J1, J2, - - . j; are positive integers with the conditions iy + 49 + -+ 4+ i = n —p
and j1 +jo+ -+ j; =m — q. Then

plindglis) . plisd linl el ) g o n

is a local section of

p+q
Fner*P*q(OYA) ® /\ (M}%,\ )gp = KOSYA(M)% in+ m)p+q

)\7

by the definition (3.11.1). We can check that this correspondence induces a morphism of com-
plexes

A+ Kosy, (My, ) ®q Kosy, (My, ) — Kosy, (My; ), (6.2.1)

which sends W, ® Wj, to W, 1p. Similarly to the case of Clu] ®¢ Wy, , we define a morphism

(Q[u] ®q Kosy, (My,)) ®q (Q[u] ®q Kosy, (My; ) — Qu] ®qg Kosy, (My;)

by using the product of Q[u] and the product A of Kosy, (Ml%)\ ). This morphism is also denoted

by A by abuse of the language.
For the case of o = (), we have the commutative diagram

QyA (90 @YA —_— KOSYA(O;}A) QK@ KOSYA(O;A)

| [
Qv, — Kosy, (03,)
for every A € S(A), where the top horizontal arrow is the tensor product of the morphism
(3.11.4), the bottom horizontal arrow is the morphism (3.11.4) itself and the left vertical arrow

is the canonical morphism which sends a ® b € Q ®g Q to ab € Q. Because of this compatibility,
the canonical morphism on the left is denoted by

A QyA (290 QyA — QyA (6.2.2)

in the remainder of this article.
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For every A, we can check the commutativity of the diagram
Kosy, (My, ) ®q Kosy, (My, ) AN Kosy, (My,)
d)(YA’MYA)@’L/)(YA’MYA)l l¢(yA~MYA) (6.2.3)

Wy, Oc Wy, — Wy,

by direct computation.
6.3. The morphisms A in 6.1 and 6.2 define the morphisms
wy, Q¢ wy, — Wy,
Wy, /x AC Wy, /x — Wy, /«
(Clu] ®c wy,) ®c (Clu] ®@c wy,) — Clu] ®c wy,
Kosy, (My,) ®g Kosy, (My,) — Kosy, (My,)
(Qlu] ®q Kosy, (My,)) ®q (Qu] ®q Kosy, (My,)) — Q[u] ®q Kosy, (My,)

of co-cubical complexes over Y,, where the left hand sides denote the co-cubical complexes defined
in 2.8. Thus the morphisms of complexes

Clwy, ®wy,) — C(wy,)
C(wy, /+ @ wy, /x) — C(Wy, /+)
C((Clu] ®c wy,) ®c (Clu] ®c wy,)) — K¢ = C(Clu] ®c wy,)
C(Kosy, (My,) ®q Kosy, (My,)) — C(Kosy, (My,))
C((Qu] ®g Kosy, (My, )) ®q (Qu] ®qg Kosy, (My,)))
— Kg = C(Qlu] ®q Kosy, (My, ))

(6.3.1)

are induced.
Definition 6.4. We define the morphisms of complexes
Oc o : Cwy,) ®c C(wy,) — C(wy,)
D/, 1 C(wy, /x) @c Cwy, /+) — Clwy, /)
P : Ko ®c Ko — Kc
®q,0 : C(Kosy, (My,)) ®g C(Kosy, (My, ) — C(Kosy, (My,))
®g : Ko ®g Kg — Ko
by composing the morphisms in (6.3.1) with the morphisms 7 in Definition 2.9.

6.5. We have the commutative diagrams

C(Kosy, (My,)) @g C(Kosy, (My,)) —%5 C(Kosy, (My,))

Yo R®vo l Jf/lo

C(wy,) ®c C(wy,) W C(wy,)

and o
K@ 290 K@ —@> K@
vew| |# (6.5.1)

Kc ®c K¢ T) K¢
C
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from the commutativity of the diagram (6.2.3). Moreover, we also have the commutative diagram

Kc ®c K¢ —%c, K¢

7f/*®7r/*l lﬂ'/*

Clwy,/s) @c Clwyyye) —— Clwy,/s)
/*
from the compatibility of A with the morphism 7 /,.
Lemma 6.6. The diagram
A
wY/* Xc UJy/* — UJY/*
@00, | &2
18 commutative.

Lemma 6.7. The equalities
e ((d‘i @id ) ®id+id®(d% ®id)> - (% ©id ) de

g ((i ®id) @ id+id®(% ® id)) - (% @id ) g
hold.
6.8. From Corollary 2.12, we obtain
e ,0(0Wa C(wy,) ® 6W, Cwy, ) C 6Waqip C(wy,)
e o(F*Clwy,) ® FP Clwy,)) C F T C(wy,)
B/, (F Cwy,/») © F'C(wy, /+)) C F*™Clwy, /x)
O (WK @ WyK¢) C WK (6.8.1)
Oc(F'Ke @ FPKe) € W wKe
Dg,0(0W, C(Kosy, (My,)) ® 0W,, C(Kosy, (My,))) C éWyyp C(Kosy, (My,))
Do(W,Kq @ WyKqg) C WaipKg
for every a,b. Therefore we obtain morphisms
Gr}fb Pe GrZV Ke® Gr})/v Kc — er_b K¢
Grgf/g Dc - GrgW Clwy,) ® GrgW Clwy,) — Grgz_vb Clwy,)
and so on, for every a,b.
Definition 6.9. We set
¥c = Pc(pc @ ¢c) : Ac ®c Ac — K,
which is a morphism of complexes. Moreover, we set
Ve, = Peo(pco @ peo) : AL ®c AL — Clwy, )P

for every p, q. Although U¢ o dose not define a morphism of complexes, it induces a morphism
of complexes
GTZ‘,/b Ucp: Gry Ac ®c Gry Ac — Grg‘fb C(wy,)
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for every a, b as before.
6.10. We can easily see the equality

Ve =mco¥c (6.10.1)
by mc,0®c = Pc,o(me,0 ® Tcy0)-

Proposition 6.11. The equality
Ue(ve ® id+id ®ue) = (% ®id)¥¢
holds
Proof. Proposition 5.31 and Lemma 6.7 yield the conclusion. (I

6.12. For the later use, we describe the morphism
Oc,o(N)[1] Gy C(dlog tA) Gryy _,, Uco @ Gy, Ac ®c Crl Ac — Qy, [-2K] (6.12.1)
for A € A**1:° and for a non-negative integer m, where O¢ o()\) is the morphism (5.14.1).
Lemma 6.13. Under the identification (5.22.2), the restriction of the morphism (6.12.1) on the
direct summand
(e(a) @z Qy, [-m — 2r]) ®c (¢(7) ®z Qy, [m — 25])
is the zero morphism except for the case of a =7 =\, s =r +m.

For the case of 0 = 7 = A\, s = r + m, the restriction of the morphism (6.12.1) on the direct
summand

(e(Q) ®z Qy, [-m — 2r]) ®@c (£(2) @z Qy, [-m — 2r])
coincides with the composite of the exchange isomorphism
(e(d) ®z Qy, [-m — 2r]) ®c (£(A) ®z Qy, [-m — 2r])
~e(d) ®ze(A) @z Qy, [—m — 2r] @c Qy, [-m — 27]
and the morphism
(=)™ Q)@ A [-m — 2r, —m — 2r]
re(A) ®ze(Q) ®z Qy, [-m — 27] @c Qy, [-m — 21| — Qy, [-2m — 47]

where Y(A) is the morphism (2.2.1), and where A[—m — 2r,—m — 2r] denotes the morphism
induced from A as in (1.4.2).

Proof. On the direct summand
(e(g) ®z Qy, [-m — 2r]) ®c (e(z) ®z Qy, [m — 25])
of Gr,vr[: Ac ®¢ Gr‘ivm Ac, the morphism Grnvg wc,o ® Gr‘ivm ¢c,0 coincides with the morphism
(=)™ ((eun) P @id) @ ((e,A) ! @1d), (6.13.1)
v

where ;1 € ATT1° v € ASTL° with p C g,v C 1. Therefore the image of the direct summand
(e(g) ®z Qy, [-m — 2r]) @c (e(z) ®z Qy, [m — 25])
by the morphism Grnvg wc,o ® Gr‘ivm ©c,o is contained in

PDlele\ p) @z Qy, [-m — 2r]) @c (e(z \ v) ©z Q. [m — 2])

pv
for p € A"t v € ASTL° with uCo,vCr.
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On the other hand, Corollary 3.10 implies that the morphism
Oc,0(N) Grg" C(dlogtA) GrlyV_,, @co (6.13.2)
is equal to zero on the direct summand
(e(a\ p) ®z Qy, [-m = 2r]) @c (e(z\ v) @z Dy, [m — 25])
of GV, wy, [-1] ®c Gr", . wy,[—s], unless the following two conditions are satisfied:
(6.13.3) p=h,(A) and v =t ()
(6.13.4) (c\p)U(z\v) CA

By condition (6.13.3) we have k = 7 + s. Moreover, condition (6.13.3) implies A = pUr C gUT
because of the conditions u C g,v C 7. By (6.13.3) and (6.13.4) we have ¢ C A, C A. Therefore
A =0 U7. Now we have the equalities

Al =la| +lz| = lenz|=2(k+1) - e Nz

from the equality k¥ = r + s, which imply [cN7| = k+ 1. Then A=cN71 =g U7r. Thus we
conclude that A\=0c=7,s=r+mand k =m + 2r.
On the direct summand

(e \ p) @2 ") @c (e(A \ ) @2 Q™) (6.13.5)
of Gr,, wpy;r ®c Gl wy, """ with the conditions s = r +m, k = m + 2r and (6.13.3), the
morphism Grfnvfim ®c,o coincides with the composite of the exchange isomorphism

(A ) @2 QL") @ (A \ ) g QL) .
~ e\ ) @z e(A\ v) @z Q]}mezr B¢ Q(}]/;m72'r (6.13.6)
and the morphism
(_1)(p—r)(v"+7n)+(p—m)\é\zlx(&\BA\Z) RN = (—1)T+me(A\E,A\Z) @ A
by using |A \ v| = r, where x(A\ g, A\ v) is the morphism (2.2.2). Because C(dlogtA) on the
direct summand wy, [~k] of C(wy,) is the morphism (—1)*(dlogtA), the morphism (6.13.2) is
equal to the composite of the isomorphism (6.13.6) and the morphism

(=) (eAnN) T Heam AXA N\ g A\ v) @ A
on the direct summand (6.13.5) by Corollary 3.10, by & = m +2r and by (A\ ) U(A\v) = A,
Here, the equality
IQ) = (exA) " HeaxmNxQA\ A\ (euN) @ (eA) ) 1 e(d) @z e(X) — Z
can be easily checked. Thus we obtain the conclusion by considering (6.13.1) with r+s = m+2r
and by the sign convention (1.4.1). O
Definition 6.14. From the commutativity of the diagram (6.5.1), a pair of the morphisms
(HP(Y, ®q), H»(Y, ®¢)) is denoted by
HP4(Y,®) : HP(Y, K) ® HY(Y, K) — HPT9(Y, K)
for every p,q. Sometimes, for x € HP(Y,K) and y € HY(Y,K), H??(Y,®)(z ® y) is simply
denoted by x Uy if there is no danger of confusion.
Lemma 6.15. We have
(zUy)Uz=2U(yUz)
for every x € H?(Y, K), y € HY(Y, K) and z € H"(Y, K).
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Proof. By Lemma 2.11. O
Lemma 6.16. As for the filtration, we have
W, HP (Y, K) UW,HY(Y,K) C W, ,HPT(Y, K) (6.16.1)
FeHP(Y,K) U FPHY(Y, K) C F*PHPH(Y, K) (6.16.2)

for every a,b. In particular, we obtain the morphism of mized Hodge structures
U (HP(Y, K), Wlp|, F) @ (H (Y, K),W(q], F) — (H""(Y, K), W[p + q], F)
for every p, q if we assume the conditions (5.9.1) and (5.9.2).
Proof. Easy by (6.8.1). O
Lemma 6.17. Under the assumptions (5.9.1) and (5.9.2), we have
yUz = (—1)PzUy
for x e HP(Y, K) and for y € H(Y, K).

Proof. The commutativity of the diagrams

HP (Y, K) @ HY(Y, K) R ety K)
HP(Y,T{'/*)@Hq(Y,Tr/*)l J/Hp-'—q(Y,ﬂ'/*)
HP(Y, C(wy,,.)) @ HI(Y, C(wy, /+)) FTTryR HPH(Y, C(wy, /4))
and
HP(Y, wy /i) @ HI(Y, wy/s) — HPTI(Y, wy )
H’)(Y,aj*)®Hq(Y,a;*)l lHPH(Y,a;*)

HP(Y,C(wy,,.)) ® HI(Y,C(wy, /x)) P HPF(Y, C(wy, /+))
pP,q iy.

implies the conclusion, by using the fact that HP(Y, 7,,) and HP(Y, aj*) are isomorphisms for all
D. (I

Definition 6.18. The wedge product on wy induces a morphism
WL Wb @ Wowd — Wbty bttt
because of the inclusion V[/wajrl A Wowi C Wrw‘ffq“. We define a morphism
@({j : Aé Rc Wow% — Af;rq

by the direct sum of the morphism above. It is easy to see that W¢ defines a morphism of
complexes Ac ®¢c Wowy — Ac.
On the other hand, the wedge product (6.2.1) on Kosy (My ) induces a morphism

Kosy (My )P /W, Kosy (My )P+ ®g Wo Kosy (My )?
— Kosy (My )P4 /W, Kosy (My )P+t
for every p,q,r. These morphisms define a morphism of complexes
Ug : Ag ®g Wo Kosy (My) — Ag

as above.



182 TARO FUJISAWA

6.19. We can easily see that the diagram

AQ ®Q Wy KOSy(My) i) AQ

asy| |

Ac ®@c Wowy — Ac
Ve

is commutative. As for the filtration, we easily see
Ve (W Ac ®c Wowy ) C Wi Ac
Ue(FPAc @ FiWowy) C FPT1A¢
@Q(WmAQ ®q Wo Kosy (My)) C W, Ag
for every m, p,q. Therefore the morphisms
Cr e : G Ac @c Wowy — Grl¥ Ac
GrY Ug : GrY Ag ®¢ Wy Kosy (My) — Gr'/ Ag

are induced for every m. The following two lemmas are easily proved. We omit the proofs here.

Lemma 6.20. Under the identification (5.22.2), the morphism Gr\, We coincides with the mor-
phism
(id@ A [=m —2r,0]) - (id ®ay)
e(a) ®z Qy, [-m — 2r] @c Wowy — £(a) ®z Qy, [-m — 2r]

on the direct summand €(a) ®z Qy, [-m —2r]@c Wowy , where a}; denotes the morphism induced
by the inclusion ay : Yo, — Y.

Similarly, under the identification (5.22.1), the restriction of the morphism Grnmf Wq is iden-
tified with the morphism

(id®@ A [-m — 2r,0])(id ®a, ")
: E(Q) XKz QYQ[—m - 27“] ®g Qy — E(g) X7z ng[—m — 27“]

on the direct summand €(c) ®z Qy, [-m — 27| ®g Qy of Gr,v,‘l/ Ag ®g Wy Kosy (My ), where A is
the morphism (6.2.2).

Lemma 6.21. The diagrams

AQ ®Q Wo Kosy (My) & AQ Ac ®c Wowy L Ac
w@®a*l JVSDQ ¢c®a*l lm
Kq ®q Ko o Kq Kc®cKe —— Kc

are commutative.

7. TRACE MORPHISM

7.1. Let Y — * be a log deformation satisfying conditions (5.9.1) and (5.9.2). In addition, we
assume

(7.1.1) all the irreducible components Yy are of dimension n

in the remainder of this article.
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Lemma 7.2. The condition GrTVX HY(Y, Kc) # 0 implies the inequalities —q < m < q and
—2n+qg<m<2n—q.

Proof. The condition Gr}y H?(Y, K¢) # 0 is equivalent to Gr)y H?(Y, Ac) # 0 by Theorem 5.29.
The condition Gr!” H?(Y, Ac) # 0 implies E; ™9t (A, W) # 0. If this condition is the case,

m

then the identification
E;™ (A, W) = HI(Y, Grl¥ Ac)

J m

~ @ P (o) @zHITT(Y,, Q)

r>max(0,—m) 0€Smtart1(A)

induced by (5.22.2) gives us the inequalities 0 < g —m —2r < 2dimY, = 2(n —m — 2r). The
conclusion can be easily obtained from these inequalities. O

Corollary 7.3. The condition H1(Y, K) # 0 implies 0 < ¢ < 2n.
Lemma 7.4. We have
W_H*"(Y, K¢) = 0, WoH>(Y, K¢) = H*"(Y, K¢)
for the weight filtration W on H?"(Y, Kc). On the other hand, we have
FrH?™(Y, K¢) = H*(Y, K¢), F" T H*™" (Y, K¢) = 0
for the Hodge filtration F.

Proof. Lemma 7.2 shows that Grnvg H2"(Y, Kc) = 0 for m # 0, Hence we obtain the conclusion
for the filtration W.
We have

(BY*"(Ac W) F) =@ D (o) @z B (Yo, Q). Fl-r])

r20 o€Sary1(A)

as in the proof of Lemma 7.2. Since dimY, = n — 2r, H*"~?"(Y,, Qy, ) = 0 for 7 > 0. Therefore

Grf, BV (Ac, W) = P £(0) @z Grl (Y, Qy,) # 0
oeA

implies p = n. Thus we conclude that
Grb, EQ*™ (Ac, W) =~ Grh B9 (K¢, W) # 0
implies p = n as desired. U
Corollary 7.5. We have an ezract sequence
E; VP (Ke, W) Zc H2"(Y,K¢) — 0 (7.5.1)
by setting Zc = Ker(d, : EY*™" (K¢, W) — E}?"(Ke, W)).
Proof. We have

H?>"(Y, K¢) ~ Gryy H"(Y, K¢) ~ EQ*" (K¢, W)
by Corollary 7.4 and by Fs-degeneration of the spectral sequence EP4(Kc, W). (]

7.6. For \ € [[° A, we have the morphism

/ L H2 2000 (1, Oy, ) — C
; .
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because dim Yy = n — d(\) for A € []” A. On the other hand, we have the morphisms
Oc,o(N[1] Gry" C(dlogtA) : Gr)"" Clwy,) — Dy, [~2d(N)]
Oc(W[1] Gy C(id ® dlogtA) : Gry Ko — Qy, [~2d(N)]
for every A € []° A.
Definition 7.7. The morphisms
Oc,o : BY?"(Cwy, ), 6W) = H™(Y,Gr)"V C(wy,)) — C
Oc : EY?"(Ke, W) = H2(Y, GryY K¢) — C
are defined by
Oco= 3 (A (@rv=D)"™ [ H (Y e G eldiogtn)
A€’ A A

Oc= 3 d(A " 2rv=D)"™ [ (Y, 6clL Grlf Clid e diog )
Ae[° A Ya
respectively, where e(a) = (—1)(*=1/2 a5 in [11, (3.3)], [18, I-14].
7.8. We can easily check the equality
O¢ = O¢oH* (Y, Cry 7c) (7.8.1)
by direct computation.

Proposition 7.9. We have ©¢d; = 0.

Proof. The morphism d; : By "?" (K¢, W) — EY*" (K, W) is induced by the Gysin morphism
v (Ke, W) : Grl¥ K¢ — GrlY Kc[1]. Therefore we have

Ocdi = 3 cd)(lal ! 2rvD) " [
Ae[° A Ya
H2"~ 1Y, 0¢(N)[2] Gry C(id @ dlog tA)[1]y1 (K, W))
€ N~ (2r/— )
T i ee) / )
H2=1(Y, 0,0 (W) [2) i C(dlog t)[1]1 (Clwy, ), aW) GrlY mco)
= Oc,0d  H*" LY, Cr}" 7 )

by Lemma 5.15, where d; in the last equality stands for the morphism of E;-terms of the spectral
sequence EP1(C(wy,),dW). Therefore the following lemma implies the conclusion. O

Lemma 7.10. For the morphism dy : Ey "?"(C(wy,),0W) — EY*"(C(wy,),dW), we have
@(C7Od1 =0.

Proof. Because we have
Grd" C(dlog tA)[1]71(C(wy, ), SW) = Y2 (Clwy, )[1], W) Grs™ C(dlog tA)
= —5(Clwy, ), W)[1] Gr$™ C(dlog tA)
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from the functoriality of the Gysin morphism and from the equality (1.5.1),
Ocot =~ 3 (A rv1)" [
Ae[]° A Yy
H>" (Y, Oc,0(\) [12(C(wy, ), W) H*" (Y, Gri" C(dlog tA))
is obtained. Then it suffices to prove that the morphism
_ d(x
> A ey =) [, Oca() the(Clur.).aW))
AelI° A Ya

from H?"(Y, Grgw C(wy,)) to C is the zero morphism.
For A € AF*1.°, Lemma 2.7 and Proposition 4.5 imply that the restriction of the morphism

Oc,0(N[1]12(C(wy, ), W) : Grd" C(wy, ) — Oy, [—2k] (7.10.1)
is the zero morphism on the direct summand
e(0) ®z Qy,, [—2 — 2d(p)] (7.10.2)
of Gr3" C(wy,) for € []° A and for o € Sotd(uy(A) under the identification (5.10.2), unless
one of the following conditions is satisfied
(7.10.3) A=pand g = AU {v} for some v € A\ A
(7.104) p=A; for some i =0,1,...,k and o = \.

For the case of (7.10.3), the restriction of the morphism (7.10.1) on the direct summand (7.10.2)
coincides with the morphism

(=D*((exr) "M ewA)H) @ ¥(Ya, Yauguy)[—1 — 24]
by (4.4.1), by Lemma 2.7 and by Proposition 4.5. For the case of (7.10.4), the restriction of the
morphism (7.10.1) on the direct summand (7.10.2) coincides with the morphism
(=1 (exn) ™t ®id = ((ex,A)HeapA) ) @id
by Lemma 2.7.
Hence, on the direct summand

€<A U {V}) Sz s S (YAU{V}’ QYAU{V})

for A € A**1.° and for some v € A\ ), the restriction of the morphism Oc,0d; coincides with the
morphism

€(k)((k+1)!)_1(27Tﬁ)k(—1)k((€x/\)_l(eu/\)_l)®/Y H2 7272 (Y, (Ya, Yaugey)

+ (k+2)e(k+1)((E+2)H)! (27r\/—71)k+1((e>\/\)_1(el,/\)_1) ® /

Yyu{vy

= e(k+ D((k+ 1)) v =) ((exn) (e, A) ™)
® (/Y H2”7272k(YA’7(YA7 YAU{V}))"’ (271'\/—71)/)/ ),

AU{v}

which turns out to be zero because of Proposition 4.3. ]
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Definition 7.11. By Proposition 7.9 and by Corollary 7.5, there exists the unique morphism
Tr: H*"(Y, K¢) — C,

such that the diagram
e —— HQn(K K@)

oclze | [

C C
commutes, where the top horizontal arrow stands for the morphism in the exact sequence (7.5.1).
We call the morphism Tr the trace morphism for ¥ — x.

Proposition 7.12. The morphism Tr is defined over Q, that is, we have
Tr(H*"(Y, Kg)) C Q
under the identification H2" (Y, Kg) ®g C ~ H2"(Y, K¢) by H2"(Y, ).
Proof. 1t suffices to prove the inclusion
Oc.oH2 (Y, Grd" 1) (EY*™ (C(Kosy, (My,)),dW)) C Q (7.12.1)

by the commutative diagram (5.6.1) and by the equality (7.8.1). Since the morphism Gr)" 1
is identified with the morphism induced by the inclusion

(2mv/=1) —a, Q—C

on the direct summand e(0) ®z Qy,, [-2d(\)] for A € []° A under the identifications (5.10.1)
and (5.10.2), we can easily obtain the inclusion (7.12.1) as desired. O

Definition 7.13. We define a pairing

Qx : HI(Y, K¢) ®c H*"79(Y, K¢) — C
by setting

Qi = Tr HP2" (Y, d¢),

that is, Qg (r ® y) = Tr(z Uy) for x € HY(Y, K) and y € H>"~4(Y, K).
Lemma 7.14. We have the property, for all q,

Qr (H1(Y, Kq) ®g H*"1(Y, Kq)) C Q.
Proof. Easy from Proposition 7.12. O

Lemma 7.15. We have
Qrly®z)=(-1)Qk(r®y)
for x € HI(Y, K) and for y € H*"~9(Y,K).

Proof. Easy by Lemma 6.17. O

Lemma 7.16. For the morphism of mized Hodge structures N in (5.16.1), the equality

Qr(Nk(r) ®y) + Qk(r @ Nk(y)) =0
holds for every x € H1(Y, K), y € H>"4(Y, K).
Proof. We have
HP9(Y,®)(Ng ®id+id®Ng) = Nk - H»4(Y, D)
by Lemma 6.7. On the other hand, Nx = 0 on H?"(Y, K) by Lemma 7.4. O
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Lemma 7.17. We have, for all p,

Qi (FPHY(Y, K) ®@c F" PHH*™ (Y, K)) = 0.
Proof. Easy by (6.16.2) and by the conclusion on F' in Lemma 7.4. O
Lemma 7.18. We have

Qr(W,HY (Y, K) @ WeH>" (Y, K)) = 0
ifa+b< —1.
Proof. We easily obtain the conclusion from the property (6.16.1) and from the fact
W_ H™(Y,K) =0
in Lemma 7.4. O
Definition 7.19. By the lemma above, the morphism )i induces the morphism
Gr HY(Y,K) @ G H?"9(Y,K) — C

which is denoted by Gr};lvﬁm Qg for m,q.
Lemma 7.20. For z € Gr!Y HY(Y, K),y € Gr", H>"~4(Y, K), we have

Gr) ., Qr(Cz®Cy)=GCr) _, Qx(z®1y),

where C’s denote the Weil operators on Grly HY(Y, K) and Gr", H**~9(Y,K) which are the
Hodge structures of weight m + q and 2n — m — q respectively.

Proof. The Weil operator on the Hodge structure Gryy H**(Y, K) of weight n coincides with the
identity by Lemma 7.4. Then we can easily see the conclusion from the fact that U is a morphism
of mixed Hodge structures. O

8. MAIN RESULTS
8.1. Let Y — * be a log deformation. We assume
(8.1.1) Y is projective,
together with condition (7.1.1). We fix an ample invertible sheaf £ on Y.

8.2. The morphism
dlog : Oy — Woywy [1]
is defined by sending a local section f € O% to df /f € Q3 = Wyws-. We note that the image of
the morphism dlog is contained in Flwy[1].
On the other hand, we have the morphism

O} — T'_1(0y) ®g 03 = Kosy (O3;n)!
which sends a local section f € O} to (n — Nk-lgfe I'—1(Oy) ®qg O3. Then we obtain a
morphism of complexes

O3 — Kosy (0% )[1] = Wy Kosy (My)[1]
denoted by dloggy. The diagram

dl
0r 225 Wy Kosy (My)[1]
‘ l(%\/ﬁ)w(y’MY)[l} (8.2.1)
Oik/ E— Wowy[l]

dlog
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is commutative by definition.
Definition 8.3. We set
co(£) = H'(Y, dlogg)([£]) € H*(Y, Wy Kosy (My))
ce(£) = H'(Y, dlog)([£]) € H*(Y, Wowy)
where [£] denotes the isomorphism class of £ in HY(Y, O3%). Moreover, we set
cxo(L) = H?(Y,a")(cq(L)) € HA(Y, Ko)
cxe(L) =H*(Y,a")(cc(L)) € H*(Y, Kc),

where a* denotes the restriction of the morphism a* : Kosy (My) — Kg (resp. a* : wy — K¢)
to the subcomplex Wy Kosy (My) C Kosy (My) (resp. Wowy C wy).

Lemma 8.4. We have the following:
(8.4.1) cx (L) € WoHA(Y, Kg)
(8.4.2) ck c(L) € WoHA(Y, Kc) N F'H?(Y, K¢)
(84.3) cxo(L) = (2m/"T)HA(Y, 6)(cx 0 (L))

Proof. The first two properties are easily seen by the definition of cx (L) and cx c(L). The
equality

ce(L) = (2mV=1)H* (Y, ¥y, ) (ca(L)),
is obtained by the commutative diagram (8.2.1). Then the third equality follows the commutative
diagram in (5.7.2). O

Definition 8.5. For every ¢, morphisms
Ik HI(Y, Kg) — H*(Y, Kg)
lgc: HY(Y, Kc) — HT2(Y, K¢)
are defined by
Iko(r) = —cxo(L) Uz = —H(Y, ®g)(ck,o(L) ® )
Ike(y) = —cxe(L) Uy = —H>(Y, @c)(cx,c(L) @ y)
for x € HY(Y, Kg) and for y € HY(Y, K¢).
Lemma 8.6. The diagram
HY(Y, Kg) —“%s HI*2(Y, Kq)
Hq(Y,w)l l (2mv/=T) HIT2 (V)
HI(Y, Ke) —— HI"(Y, Ke)

is commutative. Moreover we have, for every a,m,
lk.o(W,HYU(Y, Kg)) € W,,,HT(Y, Kq)
lk.c(Wn,HY(Y, K¢)) € W, HT (Y, K¢)
lic.c(FUH(Y, K¢)) € FPHHT (Y, Ko).

Proof. Easy from the properties of ®g and ®c. O
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Definition 8.7. The lemma above implies that the pair of the morphism

lK = (ZKQ, (271’\/ _1)_1lK,C)
defines a morphism of mixed Hodge structures
I« (HY(Y, K),W[q], F) — (HT*(Y, K), Wq], F[1])

for every q.
Lemma 8.8. We have x Ulgy =lgx Uy =Ig(xzUy) forx e H?(Y,K),y € HI(Y, K).
Proof. Easy by Lemma 6.15, by Lemma 6.17 and by the fact cx c(£) € H*(Y, K). O

Lemma 8.9. We have lx N = Nglx on H(Y, K) for all q.
Proof. Lemma 6.7 tells us the equality
NK(CK,(C(ﬁ)) Uz + CK7((3(£) U NK(QT) = NK(CK,((;(ﬁ) U 1‘)

for z € H1(Y, K). Because a* : wy — K¢ factors through the subcomplex C(wy, ) by definition,
we have Nk (cx,c(£)) = 0. Thus we have

CK7([;(£) U NK(JE) = NK(CKy(c(ﬁ) U x)
as desired. O
Definition 8.10. We set
Ly = G H"I(Y,Kg), LY = GiY,H" (Y, Ke)
and o L
L9 = (L L)
for every 4, j. Note that L*/ is a Hodge structure of weight n 4+ j — . Then

Lo=EPry, Le=PLy
%,J 1,J

is a pair of a finite dimensional Q-vector space and a C-vector space such that Lg ®g C ~ Lc.
Moreover, a morphism

< > :L®c L — C
is defined by

e(j—n)CrY , Qk(z @) ifre L7077, ye Lt
(z@y) = ’ .
0 otherwise,
which turns out to be a morphism defined over Q, that is, (z ®y) € Qif z ® y € Lg ®q L.

Theorem 8.11. The data (L, Nk,lx,{ )) is a bigraded polarized Hodge-Lefschetz module in the
sense of Guillén-Navarro Aznar [11, (4.1)-(4.3)].

Proof. We have

Gl H"H(Y, Ke) = By (K, W) ~ By (Ag, W)
by Corollary 5.30. Then L underlies a bigraded polarized Hodge-Lefschetz module by [11,
(4.5)Théoreme, (5.1)Théoreme]. Therefore it is sufficient that our data Ng,lk, ( ) coincide with
the data 27/ —1N, (27T\/—1)_1l, (27r\/—1)nw used in [11, (5.1)Théoréme]. (Our definition of
the differential of A in 5.17 is different from that in [11, (2.4)]. However, we can apply the

results in [11] because this difference only affects the sign of the morphism d; : E}Y(A, W) —
EYTHAW),)
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The morphism
Na: EPY(Ac, W) — EPP2972(Ac, W)

coincides with the morphism (27r\/—71)N because these two morphisms are induced by the same
morphism (2m/—1)vc. Thus Nk on L coincides with (27y/=1) N under the identification above.
Lemma 6.20 and Lemma 6.21 tell us that cup product with c¢x c(£) on L is induced by the usual
cup product on Y, with a’(ck.c(L)). Since a’(ck,c(L)) coincides with ¢} (a’ L) in Deligne [5,

(2.2.4.1)], the morphism Ik on L coincides with (27r\/—1)_1l.
We have

OcH" 7" Hi(Y, GI'KV—i Ue) = Oc oH" " (Y, Gr"; We o)

i,—1

by the equality (6.10.1). Therefore we have

OcH" /" H (Y, Gr}_; We)
= 3 caan e |
Ae[T° A Yy
H" 7" (Y, O¢,0(A)[1] GV C(dlog tA) Gr}*_; U )
by definition. On the direct summand
(e()) @z H" 7172 (Ya, Oy, ) @c (e(X) @z H 772 (Ya, Qyy))
~e(A) @z (A) @z H" 772 (Ya, Qyy ) ©c H 1720 (Yy, Qy, )

of H*~9(Y,Gr}" Ac) @c H"H (Y, Gr", Ac) for A € Siio0,41(A), we have

OcH" 9"+ (Y,GrlV_, We)

i,—1

= (—1)r DA te(A] — D)(A)) " (2my/=T) 2! / (W) © L)

Y

- (_1)(n—j>i6(¢)(2wﬁ)”zr/ W) ® V)

Y,

by Lemma 6.13, where U in the equalities above denotes the product of the usual de Rham
cohomology of Y. On the other direct summands, we have

OcH" 7" (Y, Gr}"_, Uc) =0

by Lemma 6.13 again. Identifying €(A) ®z €(A) and Z by the canonical isomorphism J(A), we
conclude that the pairing ( ) coincides with (277\/—1)n1/) by using the equality

(—1)"e(j —n)e(i) = e(i +j —n).

Corollary 8.12. For every i > 0 and for every q
Nic : (Gr]" HY(Y, K), F) — (GrY; HY(Y, K), F[~i])
are isomorphisms of Hodge structures of weight i + q. Moreover,
le s (Y, K), Wn — j], F) — (H""(Y, K),W[n — j], F[5))

is an isomorphism of mized Hodge structures for every j > 0.
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Definition 8.13. We set
H (Y, K) prim = Ker([is 7T HI (Y, K) — H*7+2(Y, K))

for j < n. Then a morphism Ng : H/(Y, K)prim — H/(Y, K)prim is induced by Lemma 8.9.
Moreover, we define a pairing

Sj,prim : Hj (K K)prim X HJ(Y7 K)prim — C
by .
Sjprim(z @ y) = €(j)Qx (x @ I 'y)
for z,y € H/(Y, K)prim-
Theorem 8.14. For j < n, the data
(HJ(K K)prim7 W[]]> Fa NK7 Sj,prim)

is a polarized mized Hodge structure over Q in the sense of Cattani-Kaplan-Schmid [2, Definition
(2.26)].

Proof. Lemma 7.2 implies
W_, sH/(Y,K)=0 and W,H/(Y,K)=H/(Y,K).
Therefore N};rl = 0. From (5.16.1), we have, for all p,
N (FPH (Y, K )prim) C FP7'H/ (Y, K) prim-
Since
41 ; . n—ij . .
T (B (Y, K), WL F) — (B P2V, K), Wi, Fln — j +1])
is a morphism of mixed Hodge structures, (H?(Y, K)prim, W[j], F') is a mixed Hodge structure.
Moreover, the sequences

. . ln7j+1 .
0 —— GrV W/ (Y, K)prim — Crll H/(Y,K) S—— Cr)V H>"7+2(Y, K)
are exact for all m. Therefore, we have
Grl H (Y, K ) prim = Ker(I3 71! . pmmd—n [ =mn=i+2) (8.14.1)
for all m. The commutativity of Nx and lx induces the commutative diagram
n—j+1
0 —— CrlV H/(Y, K)prim — GrlV HI(Y,K) ~“— Cr}¥ H>"7+2(Y, K)

N | | v | v

0 —— G (Y, K)prim —— G H(VK) —— GIH (Y, K),
l"}’/(—]

which shows that the morphism
Ni: Grl¥ (Y, K)prim — Gr% H (Y, K) prim

is isomorphism for ¢ > 0. Therefore Wj] = W(Ng)[j] as desired.
Take elements x,y € H/(Y, K)prim. We have

Sprim(y @ @) = €(j)Qr (y © I x) = €(j)Qr (Ix 'y © x)
= ()1 Qr(x ® 15 7y) = (=1 ) prim(z @ 1)
by Lemma 7.15 and by Lemma 8.8. Moreover, we can easily check
Sjprim(Nk @ © y) + Sj prim (2 © Niy) =0
by the commutativity of Ng and [ and by Lemma 7.16.
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Ifz € FPHI (Y, K),y € FI~Pt'HI(Y, K), Lemma 7.17 implies Qx (z ® l)x 'y) = 0 because
I’y € Fr—PHIH?=P(Y, K). Thus we obtain, for all p,

Sj’prim(Fij (Y7 K)prim ® FI—ptiHi (Y, K)prim) =0.
Now we set
P; = Ker(NiF' : Grl¥ H(Y, K) prim — Gr%5_o H (Y, K) prim)
for every ¢ > 0, which is a Hodge structure of weight ¢ + j. Then we have
Py = L7597 " N Ker(Nitt) nKer(I5 /1)

for every ¢ > 0 by (8.14.1).
By the definition of polarization of bigraded Hodge-Lefschetz module in [11, (4.3)], we have

(z® CNLIT) > 0

for z € L%~/ N Ker(Ni') N Ker(%") with = # 0, where C' denotes the Weil operator on the
Hodge structure L*J. For x € P; C L™/~ with = # 0, we have

S prim(Cz @ NiT) = €(j)Qr (Cx ® I/ NiT)
= €e(j)(-1)"™ Qxk (x @ Cly ' NiT)
(1) e(j)e(—4) (z @ Nyl x)
—€e(j+1)e(j +1)(z @ CNLIET)
= (@ CNEIKIT) >0
as desired. 0

8.15. Now the standard procedure (e.g. [18, Example 2.10]) gives us a polarization of the mixed
Hodge structure (HY(Y, K), Wlq], F') as follows.
We have a direct sum decomposition

(HY(Y, K), W], F) = @l (B> (Y, K) priwa, Wa, F[=j]) for g <n
Jj=0
(HY(Y, K), Wlq), F) = DU ("7 (Y, K)prim, Wla], Fln —q — j]) forq=n
7>0
by Corollary 8.12 and by the fact that [k is a morphism of mixed Hodge structures.
For the case of ¢ < n, we define

Sz ®y) = Z Sq—2j,prim (T ® Y;),
j=0
where 2 =37 Vexj and y = >0 ley; for some z;,y; € H2 (Y, K) prim-
For the case of ¢ > n, we set
Sq(l' ® y) = Z SQn—q—Qj,prim('rj7 yj)a
>0
where z = 37 .- 19"z and y = >is0 197"y, for some xj,y; € H2*92(Y, K) prim-
Theorem 8.16. The data
(HY(Y,K),Wlq|, F, Nk, Sq)

is a polarized mized Hodge structure over Q in the sense of Cattani-Kaplan-Schmid [2, Definition
(2.26)].
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