Topological triviality of families of map germs from R^2 to R^2
J.A. Moya-Pérez and J. J. Nuño-Ballesteros
Journal of Singularities
volume 6 (2012), 112-123
Proceedings of the Workshop on
Singularities in Geometry and Applications, Będlewo, 5 – 21 May 2011
Received: 30 December 2011. Received in revised form: 4 April 2012.
Add a reference to this article to your citeulike library.
Abstract:
We show that a 1-parameter unfolding F: (R^2 x R, 0) → (R^2 x R, 0) of a finitely determined map germ f is topologically trivial if it is excellent in the sense of Gaffney and the family of the discriminant curves Δ(f_t) is topologically trivial. We also give a formula to compute the number of cusps of 1-parameter unfoldings.
Keywords:
stable map, link, topological triviality
Mathematical Subject Classification:
Primary 58K15; Secondary 58K40, 58K60
Author(s) information:
L. Birbrair | J. J. Nuño-Ballesteros |
Departament de Geometria i Topologia | Departament de Geometria i Topologia |
Universitat de València | Universitat de València |
Campus de Burjassot | Campus de Burjassot |
46100 Burjassot SPAIN | 46100 Burjassot SPAIN |
email: Juan.Moya@uv.es | email: Juan.Nuno@uv.es |